76 research outputs found
Higgs production in association with bottom quarks
We study the production of a Higgs boson in association with bottom quarks in
hadronic collisions, and present phenomenological predictions relevant to the
13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and
matched to parton showers through the MC@NLO method; thus, they are fully
differential and based on unweighted events, which we shower by using both
Herwig++ and Pythia8. We perform the computation in both the four-flavour and
the five-flavour schemes, whose results we compare extensively at the level of
exclusive observables. In the case of the Higgs transverse momentum, we also
consider the analytically-resummed cross section up to the NNLO+NNLL accuracy.
In addition, we analyse at the effects of the
interference between the and gluon-fusion production modes.Comment: 33 pages, 17 figure
Higgs pair production at the LHC with NLO and parton-shower effects
We present predictions for the SM-Higgs-pair production channels of relevance
at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top
associated production. All these results are at the NLO accuracy in QCD, and
matched to parton showers by means of the MC@NLO method; hence, they are fully
differential. With the exception of the gluon-gluon fusion process, for which a
special treatment is needed in order to improve upon the infinite-top-mass
limit, our predictions are obtained in a fully automatic way within the
publicly available MadGraph5_aMC@NLO framework. We show that for all channels
in general, and for gluon-gluon fusion and top-pair associated production in
particular, NLO corrections reduce the theoretical uncertainties, and are
needed in order to arrive at reliable predictions for total rates as well as
for distributions.Comment: 11 pages, 7 figures, version accepted for publication on PL
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
We discuss the theoretical bases that underpin the automation of the
computations of tree-level and next-to-leading order cross sections, of their
matching to parton shower simulations, and of the merging of matched samples
that differ by light-parton multiplicities. We present a computer program,
MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level
fixed order, shower-matched, merged -- in a unified framework whose defining
features are flexibility, high level of parallelisation, and human intervention
limited to input physics quantities. We demonstrate the potential of the
program by presenting selected phenomenological applications relevant to the
LHC and to a 1-TeV collider. While next-to-leading order results are
restricted to QCD corrections to SM processes in the first public version, we
show that from the user viewpoint no changes have to be expected in the case of
corrections due to any given renormalisable Lagrangian, and that the
implementation of these are well under way.Comment: 158 pages, 27 figures; a few references have been adde
Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO
We present results for the QCD next-to-leading order (NLO) calculation of
single-top t-channel production in the 4-flavour scheme, interfaced to Parton
Shower (PS) Monte Carlo programs according to the POWHEG and MC@NLO methods.
Comparisons between the two methods, as well as with the corresponding process
in the 5-flavour scheme are presented. For the first time results for typical
kinematic distributions of the spectator-b jet are presented in an NLO+PS
approach.Comment: 16+1 pages, 8 figures, matches version accepted for publication in
JHE
The Quantum Affine Origin of the AdS/CFT Secret Symmetry
We find a new quantum affine symmetry of the S-matrix of the one-dimensional
Hubbard chain. We show that this symmetry originates from the quantum affine
superalgebra U_q(gl(2|2)), and in the rational limit exactly reproduces the
secret symmetry of the AdS/CFT worldsheet S-matrix.Comment: 22 page
Secret Symmetries in AdS/CFT
We discuss special quantum group (secret) symmetries of the integrable system
associated to the AdS/CFT correspondence. These symmetries have by now been
observed in a variety of forms, including the spectral problem, the boundary
scattering problem, n-point amplitudes, the pure-spinor formulation and quantum
affine deformations.Comment: 20 pages, pdfLaTeX; Submitted to the Proceedings of the Nordita
program `Exact Results in Gauge-String Dualities'; Based on the talk
presented by A.T., Nordita, 15 February 201
Weakly coupled N=4 Super Yang-Mills and N=6 Chern-Simons theories from u(2|2) Yangian symmetry
In this paper we derive the universal R-matrix for the Yangian Y(u(2|2)),
which is an abstract algebraic object leading to rational solutions of the
Yang-Baxter equation on representations. We find that on the fundamental
representation the universal R-matrix reduces to the standard rational R-matrix
R = R_0(1 + P/u), where the scalar prefactor is surprisingly simple compared to
prefactors one finds e.g. for sl(n) R-matrices. This leads precisely to the
S-matrix giving the Bethe Ansatz of one-loop N = 4 Super Yang-Mills theory and
two-loop N = 6 Chern-Simons theory.Comment: 16 page
Bound State Transfer Matrix for AdS5 x S5 Superstring
We apply the algebraic Bethe ansatz technique to compute the eigenvalues of
the transfer matrix constructed from the general bound state S-matrix of the
light-cone AdS5 x S5 superstring. This allows us to verify certain conjectures
on the quantum characteristic function, and to extend them to the general case.Comment: 36 pages, LaTeX, v2: typos corrected, ref added; v3: accepted for
publication in JHEP
The all-loop integrable spin-chain for strings on AdS3 × S 3 × T 4: The massive sector
We bootstrap the all-loop dynamic S-matrix for the homogeneous psu (1, 1|2)2 spin-chain believed to correspond to the discretization of the massive modes of string theory on AdS3 × S 3 × T 4. The S-matrix is the tensor product of two copies of the su (1|1)2 invariant S-matrix constructed recently for the d (2, 1; α)2 chain, and depends on two anti-symmetric dressing phases. We write down the crossing equations that these phases have to satisfy. Furthermore, we present the corresponding Bethe Ansatz, which differs from the one previously conjectured, and discuss how our construction matches several recent perturbative calculations
Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering
We present predictions for the production cross section of a Standard Model
Higgs boson in association with a top-antitop pair at next-to-leading order
accuracy using matrix elements obtained from the HELAC-Oneloop package. The NLO
prediction was interfaced to the PYTHIA and HERWIG shower Monte Carlo programs
with the help of POWHEG-Box, allowing for decays of massive particles,
showering and hadronization, thus leading to final results at the hadron level.Comment: 14 pages, 9 figure
- …