230 research outputs found

    STARE velocity at large flow angles: is it related to the ion acoustic speed?

    No full text
    International audienceThe electron drift and ion-acoustic speed in the E region inferred from EISCAT measurements are compared with concurrent STARE radar velocity data to investigate a recent hypothesis by Bahcivan et al. (2005), that the electrojet irregularity velocity at large flow angles is simply the product of the ion-acoustic speed and the cosine of an angle between the electron flow and the irregularity propagation direction. About 3000 measurements for flow angles of 50°?70° and electron drifts of 400?1500 m/s are considered. It is shown that the correlation coefficient and the slope of the best linear fit line between the predicted STARE velocity (based solely on EISCAT data and the hypothesis of Bahcivan et al. (2005)) and the measured one are both of the order of ~0.4. Velocity predictions are somewhat better if one assumes that the irregularity phase velocity is the line-of-sight component of the E×B drift scaled down by a factor ~0.6 due to off-orthogonality of irregularity propagation (nonzero effective aspect angles of STARE observations)

    CFT Duals for Extreme Black Holes

    Get PDF
    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the cosmological constant, Newton's constant and the black hole charges and spin. We then show, assuming the Cardy formula, that the microscopic entropy of the dual CFT precisely reproduces the macroscopic Bekenstein-Hawking area law. This CFT description becomes singular in the extreme Reissner-Nordstrom limit where the black hole has no spin. At this point a second dual CFT description is proposed in which the global part of the U(1) gauge symmetry is promoted to a Virasoro algebra. This second description is also found to reproduce the area law. Various further generalizations including higher dimensions are discussed.Comment: 18 pages; v2 minor change

    Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters

    Get PDF
    Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS) with the flow angle of observations (radar look direction with respect to the <I><B>E</B></I>&times;<I><B>B</I></B> electron drift). The data set available consists of ~6000 points for flow angles of 40–85° and electron drifts between 500 and 2000 m s<sup>−1</sup>. The EISCAT electron density <I>N(h)</I>-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2–4 percent react nearly linearly to the electron drift velocity in the range of 500–1000 m s<sup>−1</sup> but the rate of increase slows down at electron drifts >1000 m s<sup>−1</sup> and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses

    Using the Uncharged Kerr Black Hole as a Gravitational Mirror

    Get PDF
    We extend the study of the possibility to use the Schwarzschild black hole as a gravitational mirror to the more general case of an uncharged Kerr black hole. We use the null geodesic equation in the equatorial plane to prove a theorem concerning the conditions the impact parameter has to satisfy if there shall exist boomerang photons. We derive an equation for these boomerang photons and an equation for the emission angle. Finally, the radial null geodesic equation is integrated numerically in order to illustrate boomerang photons.Comment: 11 pages Latex, 3 Postscript figures, uufiles to compres

    Instability and Chaos in Non-Linear Wave Interaction: a simple model

    Full text link
    We analyze stability of a system which contains an harmonic oscillator non-linearly coupled to its second harmonic, in the presence of a driving force. It is found that there always exists a critical amplitude of the driving force above which a loss of stability appears. The dependence of the critical input power on the physical parameters is analyzed. For a driving force with higher amplitude chaotic behavior is observed. Generalization to interactions which include higher modes is discussed. Keywords: Non-Linear Waves, Stability, Chaos.Comment: 16 pages, 4 figure

    On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    No full text
    International audienceObservations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5?10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.Key words: Ionsophere (ionospheric irregularities) · Magnetospheric physics (auroral phenomena; magnetosphere?ionosphere interactions

    Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers

    Full text link
    We prove decidability of univariate real algebra extended with predicates for rational and integer powers, i.e., (xn∈Q)(x^n \in \mathbb{Q}) and (xn∈Z)(x^n \in \mathbb{Z}). Our decision procedure combines computation over real algebraic cells with the rational root theorem and witness construction via algebraic number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated Deduction, 2015. Proceedings to be published by Springer-Verla
    • …
    corecore