59 research outputs found

    Vascular CXCR4 Expression – a Novel Antiangiogenic Target in Gastric Cancer?

    Get PDF
    BACKGROUND: G-protein-coupled receptors (GPCRs) are prime candidates for novel cancer prevention and treatment strategies. We searched for differentially expressed GPCRs in node positive gastric carcinomas. METHODOLOGY/PRINCIPAL FINDINGS: Differential expression of GPCRs in three node positive vs. three node negative intestinal type gastric carcinomas was analyzed by gene array technology. The candidate genes CXCL12 and its receptor CXCR4 were validated by real-time reverse-transcription polymerase chain reaction in an independent set of 37 gastric carcinomas. Translation was studied by immunohistochemistry in 347 gastric carcinomas using tissue microarrays as well as in 61 matching lymph node metastases. Protein expression was correlated with clinicopathological patient characteristics and survival. 52 GPCRs and GPCR-related genes were up- or down-regulated in node positive gastric cancer, including CXCL12. Differential expression of CXCL12 was confirmed by RT-PCR and correlated with local tumour growth. CXCL12 immunopositivity was negatively associated with distant metastases and tumour grade. Only 17% of gastric carcinomas showed CXCR4 immunopositive tumour cells, which was associated with higher local tumour extent. 29% of gastric carcinomas showed CXCR4 positive tumour microvessels. Vascular CXCR4 expression was significantly associated with higher local tumour extent as well as higher UICC-stages. When expressing both, CXCL12 in tumour cells and CXCR4 in tumour microvessels, these tumours also were highly significantly associated with higher T- and UICC-stages. Three lymph node metastases revealed vascular CXCR4 expression while tumour cells completely lacked CXCR4 in all cases. The expression of CXCL12 and CXCR4 had no impact on patient survival. CONCLUSIONS/SIGNIFICANCE: Our results substantiate the significance of GPCRs on the biology of gastric carcinomas and provide evidence that the CXCL12-CXCR4 pathway might be a novel promising antiangiogenic target for the treatment of gastric carcinomas

    RA-specific expression profiles and new candidate genes

    Get PDF
    Objective: To identify rheumatoid arthritis- (RA)-specific profiles of differentially expressed genes. Methods: Synovial tissues from RA and osteoarthritis (OA) patients and from normal joints were selected according to their disease-characteristic histology. Gene expression was analyzed using DNA microarrays (GeneChip; Unigene-array) and representational difference analysis (RDA). Data were validated on larger cohorts of patients by RT-PCR. Results: Nine hundred and eighty genes were significantly regulated in RA synovial tissue as compared with non-RA. Specialized cluster analysis identified a set of 312 genes as sufficient of unequivocally discriminating RA from non-RA patterns (class discovery). Genes of highest regulation were associated with leukocyte activation (chemokines, chemokine receptors, B- and T-cell genes), endothelial and angiogenic activation, tissue destruction and remodelling [MMP-3, BMP-4, TIMPs]. Interestingly, a large set of genes was down-regulated in RA (TGF-β superfamily, apoptosis-related genes, transcription factors). Osteopontin-like genes (n=46) — up-regulated in RA — and glutathione peroxidase-3-like genes (n=85) — down-regulated in RA — yielded the highest correlation coefficients (>0.94). Megakaryocyte stimulating factor (MSF), down-regulated in a subset of RA, may hold the key to subclassification: a loss-of-function mutation in the MSF-encoding gene leads to synovial hyperplasia in camptodactyly–arthropathy–coxa vara–pericarditis syndrome, and, as in RA, also to pericardial involvement. A further candidate, vitamin-D3-up-regulated protein-1 (VDUP-1), is regulated like MSF and predisposes to premature coronary artery disease when mutated, again a feature of a subset of RA. Conclusion: RA specific gene profiles were identified and are useful to improve diagnostics of the disease. Novel gene candidates not yet in the focus of RA pathogenesis have been identified that are likely to further the understanding of RA

    Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets

    Get PDF
    The clinical phenotype of human dilated cardiomyopathy (DCM) encompasses a broad spectrum of etiologically distinct disorders. As targeting of etiology-related pathogenic pathways may be more efficient than current standard heart failure treatment, we obtained the genomic expression profile of a DCM subtype characterized by cardiac inflammation to identify possible new therapeutic targets in humans. In this inflammatory cardiomyopathy (DCMi), a distinctive cardiac expression pattern not described in any previous study of cardiac disorders was observed. Two significantly altered gene networks of particular interest and possible interdependence centered around the cysteine-rich angiogenic inducer 61 (CYR61) and adiponectin (APN) gene. CYR61 overexpression, as in human DCMi hearts in situ, was similarly induced by inflammatory cytokines in vascular endothelial cells in vitro. APN was strongly downregulated in DCMi hearts and completely abolished cytokine-dependent CYR61 induction in vitro. Dysbalance between the CYR61 and APN networks may play a pathogenic role in DCMi and contain novel therapeutic targets. Multiple immune cell-associated genes were also deregulated (e.g., chemokine ligand 14, interleukin-17D, nuclear factors of activated T cells). In contrast to previous investigations in patients with advanced or end-stage DCM where etiology-related pathomechanisms are overwhelmed by unspecific processes, the deregulations detected in this study occurred at a far less severe and most probably fully reversible disease stage. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00109-006-0122-9 and is accessible for authorized users

    Identification of Y-Box Binding Protein 1 As a Core Regulator of MEK/ERK Pathway-Dependent Gene Signatures in Colorectal Cancer Cells

    Get PDF
    Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Reducing DMU fuel consumption by means of hybrid energy storage

    Get PDF
    Purpose: This paper discusses a hybrid energy storage concept and its control strategy for hydro-mechanical DMUs. The hybrid energy storage consists of double layer capacitors and batteries. The new concept aims on reducing fuel consumption and avoiding unhealthy emissions during idling in station area. Methods: Development of a hybrid propulsion concept and control strategy requires adequate methods for modeling system behavior. The simulation environment Dymola is used to develop and evaluate the control strategy and for dimensioning the system components. Results: Simulations indicated fuel savings of up to 13% depending on track characteristics. Measurements of a scaled storage system in a HiL-environment showed good accordance of the simulated and measured behavior of battery and double layer capacitor. Conclusions: The newly developed storage system and its control strategy enable reduction of fuel consumption and unhealthy emissions in station areas
    corecore