2,891 research outputs found

    Equation of state in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach

    Get PDF
    We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the TT-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-NtN_t approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to mπ/mρ0.63m_\pi/m_\rho \simeq 0.63, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large NtN_t.Comment: 14 pages, 12 figures, v2: Table I and Figure 3 are corrected, reference updated. Main discussions and conclusions are unchanged, v3: version to appear in PRD, v4: reference adde

    Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

    Get PDF
    The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS), the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd

    Presupernova evolution and explosive nucleosynthesis of zero metal massive stars

    Full text link
    We present a new set of zero metallicity models in the range 13-80 M\rm M_\odot together to the associated explosive nucleosynthesis. These models are fully homogeneous with the solar metallicity set we published in Limongi & Chieffi (2006) and will be freely available at the web site http://www.iasf-roma.inaf.it./orfeo/public{\_}html. A comparison between these yields and an average star that represents the average behavior of most of the very metal poor stars in the range 5.0<[Fe/H]<2.5\rm -5.0<[Fe/H]<-2.5 confirms previous findings that only a fraction of the elemental [X/Fe] may be fitted by the ejecta of standard\it standard core collapse supernovae.Comment: 39 pages, 8 figures, 2 tables, accepted for publication in ApJ

    GaAs-GaAlAs distributed-feedback diode lasers with separate optical and carrier confinement

    Get PDF
    Remarkable reduction of the threshold current density is achieved in GaAs-GaAlAs distributed-feedback diode lasers by adopting a separate-confinement heterostructure. The diodes are lased successfully at temperatures up to 340 °K under pulsed operation. The lowest threshold current density is 3 kA/cm^2 at 300 °K

    Liquid phase epitaxy of GaAlAs on GaAs substrates with fine surface corrugations

    Get PDF
    Liquid phase epitaxy of GaAlAs was performed on GaAs fine surface corrugations. By optimizing the growth conditions, GaAlAs layers were grown successfully with only minimal meltback

    Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

    Get PDF
    We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explosion, best reproduces constraints on the mass of high velocity 56^{56}Ni, as inferred from the observed [Fe II] line profiles. The advantage of the binary merger progenitor model for the matter mixing is the flat and less extended ρr3\rho \,r^3 profile of the C+O core and the helium layer, which may be characterized by the small helium core mass. From the best explosion model, the direction of the bipolar explosion axis (the strongest explosion direction), the neutron star (NS) kick velocity, and its direction are predicted. Other related implications and future prospects are also given

    Nucleosynthesis in Core-Collapse Supernovae and GRB--Metal-Poor Star Connection

    Get PDF
    We review the nucleosynthesis yields of core-collapse supernovae (SNe) for various stellar masses, explosion energies, and metallicities. Comparison with the abundance patterns of metal-poor stars provides excellent opportunities to test the explosion models and their nucleosynthesis. We show that the abundance patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, HNe) rather than normal supernovae. We note that the variation of the abundance patterns of EMP stars are related to the diversity of the Supernova-GRB connection. We summarize the diverse properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB. In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order to explain the origin of C-rich EMP stars. We show that these variations and the connection can be modeled in a unified manner with the explosions induced by relativistic jets. Finally, we examine whether the most luminous supernova 2006gy can be consistently explained with the pair-instability supernova model.Comment: 15 pages, 9 figures. To appear in "Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters", eds. S. Immler, K. Weiler, & R. McCray (American Institute of Physics) (2007

    Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis

    Get PDF
    The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined

    The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe

    Full text link
    The connection between the long GRBs and Type Ic Supernovae (SNe) has revealed the interesting diversity: (i) GRB-SNe, (ii) Non-GRB Hypernovae (HNe), (iii) X-Ray Flash (XRF)-SNe, and (iv) Non-SN GRBs (or dark HNe). We show that nucleosynthetic properties found in the above diversity are connected to the variation of the abundance patterns of extremely-metal-poor (EMP) stars, such as the excess of C, Co, Zn relative to Fe. We explain such a connection in a unified manner as nucleosynthesis of hyper-aspherical (jet-induced) explosions Pop III core-collapse SNe. We show that (1) the explosions with large energy deposition rate, E˙dep\dot{E}_{\rm dep}, are observed as GRB-HNe and their yields can explain the abundances of normal EMP stars, and (2) the explosions with small E˙dep\dot{E}_{\rm dep} are observed as GRBs without bright SNe and can be responsible for the formation of the C-rich EMP (CEMP) and the hyper metal-poor (HMP) stars. We thus propose that GRB-HNe and the Non-SN GRBs (dark HNe) belong to a continuous series of BH-forming stellar deaths with the relativistic jets of different E˙dep\dot{E}_{\rm dep}.Comment: 8 pages, 6 figures. To appear in "Massive Stars as Cosmic Engines", Proceedings of IAU Symposium 250 (December 2007, Kauai), eds. F. Bresolin, P.A. Crowther, & J. Puls (Cambridge Univ. Press
    corecore