387 research outputs found

    The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words

    Get PDF
    The relation of abstract concepts to the modality-specific systems is discussed controversially. According to classical approaches, the semantic content of abstract concepts can only be coded by amodal or verbal-symbolic representations distinct from the sensory and motor systems, because abstract concepts lack a clear physical referent. Grounded cognition theories, in contrast, propose that abstract concepts do not depend only on the verbal system, but also on a variety of modal systems involving perception, action, emotion and internal states. In order to contribute to this debate, we investigated the semantic content of abstract concepts using a property generation task. Participants were asked to generate properties for 296 abstract concepts, which are relevant for constituting their meaning. These properties were categorized by a coding-scheme making a classification into modality-specific and verbal contents possible. Words were additionally rated with regard to concreteness/abstractness and familiarity. To identify possible subgroups of abstract concepts with distinct profiles of generated features, hierarchical cluster analyses were conducted. Participants generated a substantial proportion of introspective, affective, social, sensory and motor-related properties, in addition to verbal associations. Cluster analyses revealed different subcategories of abstract concepts, which can be characterized by the dominance of certain conceptual features. The present results are therefore compatible with grounded cognition theories, which emphasize the importance of linguistic, social, introspective and affective experiential information for the representation of abstract concepts. Our findings also indicate that abstract concepts are highly heterogeneous requiring the investigation of well-specified subcategories of abstract concepts, for instance as revealed by the present cluster analyses. The present study could thus guide future behavioral or imaging work further elucidating the representation of abstract concepts

    Of autoregressive continuous time model parameters estimation

    Get PDF
    This article revisits a sequential approach to the estimation of the parameter in a first-order autoregressive model (AR(1)) with continuous time. There is provided a numerical study to get a results of sequential estimations of the parameter in first-order autoregressive model with continuous time and is computed a stopping rule and the optimal time of observations. Also there is provided a comparing analysis of estimation results with using the sequential approach both the optimal time of observations

    Sustainable Intensification of Livestock Systems Using Forage Legumes in the Anthropocene

    Get PDF
    Sustainable intensification of livestock systems implies greater efficiency in resource utilization resulting in greater output of products and other ecosystem services per unit of resource input. Strategies to improve resource use efficiency include diversification of plant and ruminant species with complementary resource use. Forages that have root systems with contrasting architecture and exploring different soil layers with complementary use of resource acquisition (e.g., nutrients, water) could enhance primary productivity. Belowground interactions with soil microbiota (e.g., mycorrhizae) is key to enhance resource utilization. Forages with complementary canopy characteristics that helps enhancing light interception and utilization could also lead to greater resource utilization. Integrating forage legumes into livestock systems is a viable way to reduce input of industrial N fertilizer, reducing the use of fossil fuels and helping to mitigate global warming, a major problem during the Anthropocene. Some forage legumes have greater concentration of secondary compounds such as condensed tannins that might reduce emission of greenhouse gases (GHG) from eructation and from excreta. Livestock are major contributors to overall GHG emissions from agricultural systems, and any reduction on those emissions without compromising animal performance is welcome. Furthermore, forage legumes might enhance cattle performance because of greater nutritive value, resulting in greater beef production per unit of GHG released. In fact, shortening the production cycle and improving cattle reproductive efficiency could have major impact reducing the overall carbon footprint of the system. Grazing systems with more diversified plant species are typically more resistant and resilient, adapting to current climate changes during the Anthropocene. There are examples of successful integration of forage legumes into livestock systems in different regions of the world, with major reduction in off-farm inputs and maintaining the system productive. These successful examples must be used to increase adoption and to improve the efficiency of current livestock systems

    Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification.

    Get PDF
    The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts.This study was funded by the Juvenile Diabetes Research Foundation International, the European Commission FP7 project BetaCellTherapy (agreement No. 241883), a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, and a University of Edinburgh Chancellor’s Fellowship awarded to GM. GM was a JDRF advanced postdoctoral fellow. AS is a Medical Research Council Professor.This is the final version of the article. It was first available from Wiley via http://dx.doi.org/10.15252/embj.20159211

    Survival of pancreatic cancer cells lacking KRAS function

    Get PDF
    Activating mutations in the proto-oncogene KRAS are a hallmark of pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy with few effective therapeutic options. Despite efforts to develop KRAS-targeted drugs, the absolute dependence of PDAC cells on KRAS remains incompletely understood. Here we model complete KRAS inhibition using CRISPR/Cas-mediated genome editing and demonstrate that KRAS is dispensable in a subset of human and mouse PDAC cells. Remarkably, nearly all KRAS deficient cells exhibit phosphoinositide 3-kinase (PI3K)-dependent mitogen-activated protein kinase (MAPK) signaling and induced sensitivity to PI3K inhibitors. Furthermore, comparison of gene expression profiles of PDAC cells retaining or lacking KRAS reveal a role of KRAS in the suppression of metastasis-related genes. Collectively, these data underscore the potential for PDAC resistance to even the very best KRAS inhibitors and provide insights into mechanisms of response and resistance to KRAS inhibition

    Enzyme self-label-bound ATTO700 in single-molecule and super-resolution microscopy

    Get PDF
    Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy

    A Novel Technique to Label Cover Crop Biomass Using Stable Isotopes

    Get PDF
    Stable isotopes can be used as tracers for carbon and nitrogen pathways being a great tool to track nutrients in integrated systems. The objective of this experiment was to understand the partitioning of 15N and 13C within cover crop plants when they were labeled with stable isotopes, using chambers under field conditions. Cover crops were planted at the University of Florida, North Florida Research and Education Center-Marianna, located in Marianna, FL. Treatments were four cover crops, in which one was considered a typical cover crop system and the other three consisted of an integrated crop-livestock system with or without the inclusion of legume or different nitrogen fertilizer rates grazed every two weeks. All treatments were replicated three times in a randomized complete block design. Two chambers were built and placed in each plot to label the cover crop plants. For the 15N labeling, 15N2-labeled urea (98 atom% 15N) was applied at a rate of 0.5 kg N ha-1 only once. The target amount of 13CO2 (99 atom% 13C) was determined considering a 20% enrichment of the CO2 concentration present inside the chamber’s volume. The 13CO2 labeling was performed for 28 consecutive days. The labeling technique using chambers and stable isotopes to enrich cover crop species worked under field conditions for both, grass and legume species. Moving forward, this labeling technique can be a useful tool to track nutrient pathways, especially litter decomposition in diversified integrated crop and livestock systems under different management practices

    Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts

    Get PDF
    The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes

    Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients

    Get PDF
    Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but also patients with long survival or long-term remission have been reported. Underlying molecular signatures and mechanisms that contribute to these survival differences are only poorly understood and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing two robust patient subgroups with profound differences in survival. We further determined molecular signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- compared to long-lived patients. We identified that the majority of measured miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene regulatory networks to predict potential major regulators and found several genes and miRNAs with known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed survival differences of both subgroups and could therefore be important for prognosis. Moreover, the characteristic gene mutation and expression signatures that distinguished short- from long-lived patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring system. Our study represents the first in-depth computational approach to identify molecular factors associated with survival differences of DNMT3A-mutant AML patients and could trigger additional studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A mutations

    Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis

    Get PDF
    Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body’s vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor–β (TGFβ) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)–dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis
    corecore