43 research outputs found

    Application of the Standardized Precipitation Evapotranspiration Index (SPEI) for drought analysis and monitoring: characteristics, recommendations and comparison with other indices

    Get PDF
    The complexity of drought quantification and analysis: • Droughts are difficult to pinpoint in time and space given different economic sectors and natural systems affected. • We identify a drought by its effects or impacts on different types of systems (agriculture, water resources, ecology, forestry, economy, etc.), but there is not a physical variable we can measure to quantify droughts. • Long-term drought objective metrics (streamflows, soil moisture, lake levels, etc.) are commonly not available. Moreover, using only objective metrics other relevant variables to determine drought severity (e.g. the atmospheric water demand) are not taken into account. • We use the so-called “DROUGHT INDICES” for drought quantification and analysis. Standardized Precipitation Evapotranspiration Index (SPEI): The SPEI uses the difference between precipitation and ETo. This represents a simple climatic water balance which is calculated at different time scales to obtain the SPEI. With a value for ETo, the difference between the precipitation (P) and PET for the month i is calculated according to: Di = Pi-EToi, The calculated D values are aggregated at different time scalesPeer Reviewe

    The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe

    Get PDF
    This paper analyses the influence of different atmospheric circulation indices on the multi-scalar drought variability across Europe by using the Standardized Precipitation Evapotranspiration Index (SPEI). The monthly circulation indices used in this study include the North Atlantic oscillation (NAO), the East Atlantic (EA), the Scandinavian (SCAN) and the East Atlantic-Western Russia (EA-WR) patterns, as well as the recently published Westerly Index (WI), defined as the persistence of westerly winds over the eastern north Atlantic region. The results indicate that European drought variability is better explained by the station-based NAO index and the WI than by any other combination of circulation indices. In northern and central Europe the variability of drought severity for different seasons and time-scales is strongly associated with the WI. On the contrary, the influence of the NAO on southern Europe droughts is stronger than that exerted by the WI. The correlation patterns of the NAO and WI with the SPEI show a spatial complementarity in shaping drought variability across Europe. Lagged correlations of the NAO and WI with the SPEI also indicate enough skill of both indices to anticipate drought severity several months in advance. As long as instrumental series of the NAO and WI are available, their combined use would allow inferring European drought variability for the last two centuries and improve the calibration and interpretation of paleoclimatic proxies associated with drought

    Recent changes of relative humidity: regional connections with land and ocean processes

    Get PDF
    We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 using both observations and the ERA-Interim dataset. We compared the variability and trends in RH with those of land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. The sources of moisture for each particular region were identified by integrating different observational data and model outputs into a Lagrangian approach. The aim was to account for the possible role of changes in air temperature over land, in comparison to sea surface temperature (SST), but also the role of land evapotranspiration and the ocean evaporation on RH variability. The results demonstrate that the patterns of the observed trends in RH at the global scale cannot be linked to a particular individual physical mechanism. Our results also stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends. Albeit with uncertainty in establishing a direct causality between RH trends and the different empirical moisture sources, we found that the observed decrease in RH in some regions can be linked to lower water supply from land evapotranspiration. In contrast, the empirical relationships also suggest that RH trends in other target regions are mainly explained by the dynamic and thermodynamic mechanisms related to the moisture supply from the oceanic source regions. Overall, while this work gives insights into the connections between RH trends and oceanic and continental processes at the global scale, further investigation is still desired to assess the contribution of both dynamic and thermodynamic factors to the evolution of RH over continental regions.Ministerio de Economía y Competitividad | Ref. PCIN-2015-220Ministerio de Economía y Competitividad | Ref. CGL2014-52135-C03-01Ministerio de Economía y Competitividad | Ref. CGL2014-60849-JINEuropean Commission | Ref. n. 69046

    Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture

    Get PDF
    The Vapor Pressure Deficit (VPD) is one of the most relevant surface meteorological variables; with important implications in ecology, hydrology, and atmosphere. By understanding the processes involved in the variability and trend of the VPD, it is possible to assess the possible impacts and implications related to both physical and human environments, like plant function, water use efficiency, net ecosystem production, atmospheric CO2 growth rate, etc. This study analysed recent temporal variability and trends in VPD in Spain between 1980 and 2020 using a recently developed high-quality dataset. Also, the connection between VPD and soil moisture and other key climate variables (e.g. air temperature, precipitation, and relative humidity) was assessed on different time scales varying from weekly to annual. The objective was to determine if changes in land-atmosphere feedbacks connected with soil moisture and evapotranspiration anomalies have been relevant to assess the interannual variability and trends in VPD. Results demonstrate that VPD exhibited a clear seasonality and dominant positive trends on both the seasonal (mainly spring and summer) and annual scales. Rather, trends were statistically non-significant (p > 0.05) during winter and autumn. Spatially, VPD positive trends were more pronounced in southern and eastern of Spain. Also, results suggest that recent trends of VPD shows low contribution of variables that drive land-atmosphere feedbacks (e.g. evapotranspiration, and soil moisture) in comparison to the role of global warming processes. Notably, the variability of VPD seems to be less coupled with soil moisture variability during summertime, while it is better interrelated during winter, indicating that VPD variability would be mostly related to climate variability mechanisms that control temperature and relative humidity than to land-atmosohere feedbacks. Overall, our findings highlight the importance of assessing driving forces and physical mechanisms that control VPD variability using high-quality climate datasets, especially, in semiarid and sub-humid regions of the world

    Increased Vegetation in Mountainous Headwaters Amplifies Water Stress During Dry Periods

    Get PDF
    The dynamics of blue and green water partitioning under vegetation and climate change, as well as their different interactions during wet and dry periods, are poorly understood in the literature. We analyzed the impact of vegetation changes on blue water generation in a central Spanish Pyrenees basin undergoing intense afforestation. We found that vegetation change is a key driver of large decreases in blue water availability. The effect of vegetation increase is amplified during dry years, and mainly during the dry season, with streamflow reductions of more than 50%. This pattern can be attributed primarily to increased plant water consumption. Our findings highlight the importance of vegetation changes in reinforcing the decrease in water resource availability. With aridity expected to rise in southern Europe over the next few decades, interactions between climate and land management practices appear to be amplifying future hydrological drought risk in the region.This work was supported by projects CGL2017-82216-R, PCI2019-103631, and PID2019-108589RA-I00 financed by the Spanish Commission of Science and Technology and FEDER; CROSSDRO project financed by AXIS (Assess-ment of Cross(X)-sectoral climate Impacts and pathways for Sustainable transformation), JPI-Climate co-funded call of the European Commission and INDECIS which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462). Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Miquel Tomas-Burguera received a “Juan de la Cierva” postdoctoral contract (FJCI-2019-039261-I Spanish Ministry of Science and Innovation). C. Azorin-Molina and S. Grainger. acknowledge funding from the Irish Environmental Protection Agency grant 2019-CCRP-MS.60. C. Juez acknowl-edges funding from the H2020-MSCA-IF-2018 programme (Marie Sklodows-ka-Curie Actions) of the European Union under REA grant agreement, number 834329-SEDILAND

    The complex influence of ENSO on droughts in Ecuador

    Get PDF
    48 Pags.- 1 Tabl.- 18 Figs. The definitive version is available at: http://link.springer.com/journal/382In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.This work was supported by the EPhysLab (UVIGO-CSIC Associated Unit) and the research projects I-COOP H2O 2013CD0006: “Test multisectorial y actividades demostrativa sobre el potencial desarrollo de sistemas de monitorización de sequías en tiempo real en la región del oeste de Sudamérica” financed by the Spanish National Research Council, CGL2011-27574-CO2-02, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT), financed by the Spanish Commission of Science and Technology and FEDER, and “LIFE12 ENV/ES/000536-Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European Commission. Cesar Azorin-Molina was supported by the JCI-2011-10263 Grant. Arturo Sanchez-Lorenzo was supported by the JCI-2012-12508 Grant. Miquel Tomas-Burguera was supported by a doctoral grant by the Ministry of Economy and Competitiveness and Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government. E. Aguilar was funded by the Grant CCI-009-ATN/OC-12439-RG-2012 from the Banco Iberoamericano de Desarrollo.Peer reviewe

    High-spatial-resolution probability maps of drought duration and magnitude across Spain

    Get PDF
    Assessing the probability of occurrence of drought is important for improving current drought assessment, management and mitigation measures, and strategies across Spain. This study employed two well-established drought indices, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), to characterize drought duration and magnitude at different timescales over Spain. In order to map the drought hazard probability, we applied the extreme value theory and tested different thresholds to generate peak-over-threshold (POT) drought duration and magnitude series. Our results demonstrate that the generalized Pareto (GP) distribution performs well in estimating the frequencies of drought magnitude and duration. Specifically, we found a good agreement between the observed and modelled data when using upper percentiles to generate the POT series. Spatially, our estimations suggest a higher probability of extreme drought events in southern and central Spain compared to the northern and eastern regions. Also, our study found spatial differences in drought probability estimations as a function of the selected drought index (i.e. SPI vs. SPEI) and timescale (i.e. 1, 3, 6, and 12 months). Drought hazard probability maps can contribute to the better management of different sectors (e.g. agriculture, water resources management, urban water supply, and tourism) at national, regional, and even local scale in Spain.</p
    corecore