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Abstract. Assessing the probability of occurrence of drought
is important for improving current drought assessment, man-
agement and mitigation measures, and strategies across
Spain. This study employed two well-established drought
indices, the Standardized Precipitation Index (SPI) and the
Standardized Precipitation Evapotranspiration Index (SPEI),
to characterize drought duration and magnitude at different
timescales over Spain. In order to map the drought hazard
probability, we applied the extreme value theory and tested
different thresholds to generate peak-over-threshold (POT)
drought duration and magnitude series. Our results demon-
strate that the generalized Pareto (GP) distribution performs
well in estimating the frequencies of drought magnitude and
duration. Specifically, we found a good agreement between
the observed and modelled data when using upper percentiles
to generate the POT series. Spatially, our estimations suggest
a higher probability of extreme drought events in southern
and central Spain compared to the northern and eastern re-
gions. Also, our study found spatial differences in drought
probability estimations as a function of the selected drought
index (i.e. SPI vs. SPEI) and timescale (i.e. 1, 3, 6, and 12
months). Drought hazard probability maps can contribute
to the better management of different sectors (e.g. agricul-
ture, water resources management, urban water supply, and
tourism) at national, regional, and even local scale in Spain.

1 Introduction

Drought is one of the main hydroclimatic hazards in Spain,
with adverse impacts on natural and human environments
(Pérez and Barreiro-Hurlé, 2009; UNEP, 2006). Numer-
ous studies have analysed drought characteristics in Spain,
suggesting a strong variability over both space and time
(e.g. Dominguez-Castro et al., 2019a; Gonzalez-Hidalgo et
al., 2018). In Spain, drought management measures are usu-
ally based on insurance and government subsidies to dimin-
ish their impacts, particularly those related to the agricul-
tural sector (Ferndndez, 2006). Alongside the existing sys-
tems for monitoring hydrological drought conditions across
Spain (Maia and Vicente-Serrano, 2017), there are various
pieces of national legislation (e.g. special drought plans) that
aim at improving drought adaptation strategies and practices
(Garrick et al., 2017).

Although current national measures are quite useful to
diminish drought risk, other improved approaches are still
desired to reduce drought risk, particularly for real-time
drought monitoring (e.g. Svoboda et al., 2002) and forecast-
ing (e.g. Mishra et al., 2009; Mishra and Singh, 2011). In this
context, drought probability maps can be a promising tool to
characterize drought risk at a detailed spatial scale. In par-
ticular, it is possible to determine the probability of drought
episodes of a certain severity, allowing for better sectorial
management strategies. Due to the availability of dense spa-
tial climate data, there is a possibility to map drought proba-
bility at a fine spatial scale. This detailed scale can be useful
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for different socioeconomic sectors and for natural ecosys-
tems. The utility of probabilistic approaches for enhancing
drought monitoring and adaptation was evidenced in many
regions worldwide (e.g. Engeland et al., 2005; Hussain et al.,
2018; She et al., 2014; Tosunoglu and Can, 2016; Zamani et
al., 2015).

In Spain, several studies have developed dry spell proba-
bility maps (e.g. Lana et al., 2006; Martin-Vide and Gomez,
1999; Pérez-Sanchez and Senent-Aparicio, 2018). However,
given that the probability of occurrence of dry spells is higher
in arid regions than in humid regions, these studies did not
account for the different drought hazard probabilities across
Spain. It is well-recognized that the frequency and duration
of dry spells are largely driven by the climatology of the
studied area. Accordingly, the spatial variability of climate
aridity can show similar spatial patterns to those of dry spell
probability. However, drought probability cannot necessar-
ily be related to the spatial patterns of climate aridity, as it
can be associated more with the intrinsic characteristics of
drought events. This is simply because, irrespective of the
climatology, drought can occur in any world region when
there is a negative anomaly with respect to the long-term
average moisture conditions (Wilhite and Pulwarty, 2017).
This highlights the importance of data standardization to
make drought characteristics (e.g. duration, intensity, sever-
ity) comparable among regions with different climatic con-
ditions. Several drought indices (e.g. Standardized Precipi-
tation Index (SPI), Standardized Precipitation Evapotranspi-
ration Index (SPEI), Palmer Drought Severity Index, Self-
calibrated Palmer Drought Severity Index) have been devel-
oped to characterize drought conditions across regions with
different climatic conditions (Redmond, 2002). Also, irre-
spective of climatic conditions, these indices can identify
drought episodes according to their duration and magnitude
(Dracup et al., 1980) Overall, based on these drought indices,
the probability of occurrence of drought duration and magni-
tude can be characterized at a detailed spatial resolution. In
their assessment of drought characteristics in Serbia, ToSié
and Unkasevi¢ (2014) analysed the probability of occurrence
of drought using the SPI between 1949 and 2011, concluding
that the generalized Pareto (GP) distribution fits well with
the series at 1- and 12- month timescales. Similarly, Yusof
et al. (2013) analysed the probability of drought duration
and magnitude using the SPI and rainfall data from 30 rain
gauges distributed across peninsular Malaysia. Also, Zin et
al. (2013) assessed the return period of drought severity over
peninsular Malaysia by means of the SPI. An inspection of
these studies reveals that they employed only an individual
drought index in most cases, with few attempts to explore the
possible differences in drought hazard probability as a func-
tion of different drought indices (e.g. Yan et al., 2018) or dif-
ferent drought timescales (Moradi et al., 2011; ToSi¢ and Un-
kasevi¢, 2014). Due to the varying response of the different
hydrological subsystems, socioeconomic sectors, and natu-
ral ecosystems to drought, the impacts of droughts should
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be assessed at various drought timescales (McKee et al.,
1993; Vicente-Serrano, 2013). Moreover, the spatial patterns
of drought and hazard probability maps can differ largely
in response to timescale (Vicente-Serrano, 2006). Taken to-
gether, it is important to assess drought hazard probability
at different drought timescales to meet the specific needs of
different socioeconomic sectors and natural systems.

The overall objective of this study is to employ a newly
developed high-resolution spatial (1.21 km?) and temporal
(weekly) gridded dataset of drought indices (Vicente-Serrano
et al., 2017) to characterize drought events in Spain. Specif-
ically, this study aims to (i) apply the extreme value theory
to determine the best threshold and statistical distribution to
fit the probability of drought duration and magnitude, (ii) ex-
plore spatial variations in this probability as a function of two
common drought indices, with different underlying calcula-
tions (i.e. SPI vs. SPEI), and (iii) assess whether there are
spatial differences in drought hazard probability in response
to the different drought timescales. In Spain, this detailed
spatial assessment is still lacking, limiting the possibility to
provide guidance on the use of drought hazard probability to
manage and mitigate drought risks at the national, regional,
and even local scale.

2 Data and methods
2.1 Dataset

Based on gridded datasets of maximum and minimum air
temperatures (1304 observatories), precipitation (2269 ob-
servatories), wind speed (82 observatories), relative humid-
ity (179 observatories), and sunshine duration (112 obser-
vatories), Vicente-Serrano et al. (2017) developed a high-
resolution spatial (1.21 km?) and temporal (weekly) drought
dataset for Spain (412178 pixels). This dataset spans the
period from 1961 to 2014. This drought dataset was devel-
oped after a rigorous procedure to check the quality and
homogeneity of the input climatic data. The grid of each
variable was computed by a universal kriging method (Bor-
rough and McDonnell, 1998; Pebesma, 2004) using the lat-
itude, longitude, and elevation of each grid cell as auxil-
iary variables. The grid layers were validated with a jack-
knife resampling procedure (Phillips et al., 1992), indicat-
ing low differences between the predicted and the observed
values for each grid. A detailed description of this dataset
can be found in Vicente-Serrano et al. (2017). Overall, these
gridded climatic data were employed to compute the SPI
(McKee et al., 1993) and the SPEI (Vicente-Serrano et al.,
2010) at different timescales ranging from 1 to 48 months
(http://monitordesequia.csic.es, last access: 6 March 2019).
While the SPI accounts only for precipitation data, the SPEI
is based on a normalization of the difference between pre-
cipitation and atmospheric evaporative demand (AED). In
this study, we employed these two drought indices to char-
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acterize the possible impacts of the AED on drought hazard
probability. Drought characteristics were assessed for the pe-
riod 1961-2014 using the SPI and SPEI at timescales of 1, 3,
6, and 12 months.

2.2 Selection of drought events

There are several criteria (thresholds) to identify indepen-
dent drought events (e.g. Fleig et al., 2006; Lee et al., 1986).
These thresholds are generally arbitrary, with no clear objec-
tive metrics to relate a certain value of a drought index with
specific sectorial impacts. Indeed, this is a challenging task,
given the large number of economic sectors and environ-
mental systems impacted by droughts (Pérez and Barreiro-
Hurlé, 2009). Furthermore, regions and sectors can respond
differently to various drought timescales (Lorenzo-Lacruz et
al., 2013; Pasho et al., 2012). In this work, we obtained se-
ries of drought events from weekly gridded series of SPEI
and SPI at four selected timescales (1, 3, 6, and 12 months).
We used a zero threshold to define drought events. Although
this threshold allows for the inclusion of less severe drought
events, it can secure a sufficient sampling size to conduct the
probabilistic analysis. Importantly, the retention of drought
events in this manner will not bias the obtained results, con-
sidering that high values of the series will be retained follow-
ing the peak-over-threshold approach.

Overall, each drought event was defined as the period of
consecutive weeks with SPI or SPEI values lower than zero.
Likewise, the series of drought duration and magnitude were
created based on the consecutive weeks of SPEI-SPI values
below zero. The drought magnitude was calculated follow-
ing the classical approach of Dracup et al. (1980). However,
for operational purposes, the total magnitude of drought was
transformed to positive values.

2.3 Probabilistic analysis

The peak-over-threshold (POT) series were obtained using
series of drought duration and magnitude calculated at 1-
, 3-, 6-, and 12-month timescales. These series are stationary
and do not show any trend (Dominguez-Castro et al., 2019a),
which is a prerequisite for the application of extreme value
theory. The POT series were obtained according to a thresh-
old (xp) as

Y=X—xoVX > xp. (1)

In order to assess the role of the selected threshold in fitting
the probability distribution of the series, we tested different
thresholds defined according to the percentiles of the series
(i.e. Oth, 10th, 20th, ..., 90th, and 95th). Following this pro-
cedure, we selected the optimal percentile threshold to define
the exceedance series of drought duration and magnitude for
the different indices and timescales.
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Numerous studies employed the GP distribution to model
meteorological and hydrological droughts (e.g. Fleig et al.,
2006; Nadarajah, 2008; Nadarajah and Kotz, 2008; Chen et
al., 2011; Yusof et al., 2013; ToSi¢ and UnkaSevi¢, 2014,
Trenberth et al., 2014; Zamani et al., 2015; Liu et al., 2016).
This is mainly because the probability distribution of a POT
series, with random occurrence times, fits well with GP dis-
tribution (e.g. Hosking and Wallis, 1987; Pham et al., 2014;
Wang, 1991). The GP distribution is a flexible, long-tailed
distribution, whose distribution function is formulated as

F(x):l—[l—g(x—s)]l/K, )

where k, o, and ¢ are the shape, scale, and location pa-
rameters of the distribution origin that correspond to the
lower bound x¢. The GP parameters were obtained using L-
moment statistics following Hosking (1990).

Hosking (1990) proposed a procedure to provide paramet-
ric approximations to the relationships between L skewness
and L kurtosis. This procedure allows for the determination
of the suitability of the GP distribution to fit the exceedance
obtained from different xo values. Herein, we plotted the dif-
ferent L-moment diagrams with the statistics obtained from
drought duration and magnitude series. The aim was to as-
sess the suitability of the different xq thresholds to obtain
POT series with a good fit to the GP distribution.

We applied the Anderson—Darling test to check the good-
ness of fit of the POT series obtained from different x0
thresholds. To define the most suitable threshold, we paid
attention to securing a sample of sufficient length to obtain
solutions for the GP parameters. This is important to obtain
reliable probability estimations. For this purpose, we com-
pared the observed maximum drought duration and magni-
tude obtained for the whole study period (1961-2014) with
those estimated using GP distribution and POT for the dif-
ferent thresholds. Then, we calculated the probability that
an event of magnitude X7 in a period of T = 54 years (ex-
pressed in the original scale) will occur at least once in a
period of T years. This is formulated as

o 1\
XT:8+;|:1_(ﬁ) :|, (3)

where A is a frequency parameter equalling the average num-
ber of occurrences of X per year in the original sample. The
performance of each threshold was assessed using different
accuracy statistics, including the mean absolute error (MAE),
the Willmott D agreement index (Willmott, 1981), and the
Pearson’s r correlation coefficient. Comparisons were made
for the observed maximum drought duration and magnitude
and the GP estimations for the same sample length.

Once a general threshold was established to define the
POT series of drought duration and magnitude, we deter-
mined the goodness of the GP modelling for each drought
index and timescale. For this purpose, we used probability—
probability (P-P) plots, which define the extent to which
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Figure 1. L-moment diagrams for the peak-over-threshold series obtained from the 1-month SPEI duration series.
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Figure 2. L-moment diagrams for the peak-over-threshold series obtained from the 12-month SPEI magnitude series.
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Figure 3. Probability density diagrams showing the number of cases corresponding to the peak-over-threshold drought duration—magnitude
series at different percentiles and different timescales (1, 3, 6, and 12 months) using (a) SPI and (b) SPEL

the empirical and modelled GP cumulative distribution func-
tions (CDFs) closely match. This procedure was applied to a
total of 412 178 gridded series of drought magnitude and du-
ration covering the four selected timescales of the SPI and
SPEI. The empirical CDFs were obtained using the plot-
ting position formula proposed by Hosking (1990) for highly
skewed data, according to

P(X <x)= 209 )
- N

where i is the rank of the observations arranged in descend-
ing order, and N is the number of observations. The goodness
of agreement between the empirical and modelled CDFs was
tested using a weighted correlation coefficient. This proce-
dure gives more weight to the highest and less frequent ob-
servations in the sample, which are more relevant to extreme
value analysis. The weight was defined using the empirical
CDF as

Nat. Hazards Earth Syst. Sci., 19, 611-628, 2019

1

®) = T-CDR(G) )

where CDF is the cumulative distribution function, and
Jj refers to the observations in the series of exceedance sorted
in ascending order.

3 Results

3.1 Selection of the distribution and threshold to define
the POT series

Figure 1 illustrates some examples of L-moment diagrams,
considering the 1-month SPEI duration series over peninsu-
lar Spain. The series for each diagram were obtained con-
sidering POT at different percentiles. Each line represents a
theoretical curve distribution: the generalized logistic (GLO,
blue), generalized extreme value (GEV, green), generalized
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Figure 4. Willmott’s D, mean absolute error (MAE), and Pearson’s r summarized as a function of the different percentiles used to obtain the
peak-over-threshold series. All accuracy metrics were computed based on comparing the maximum observed and modelled 1-, 3-, 6-, and
12-month SPI and SPEI drought duration and magnitude between 1961 and 2014. The modelled data were computed using the generalized

Pareto distribution.

Pareto (GPA, red), generalized normal (GNO, black), and
Pearson type III (PE3, light blue). As noted, irrespective of
the selected threshold, the drought duration series tend to
closely approximate to the GP distribution. Notably, there is
a higher dispersion of points around the theoretical curve at
higher percentiles, which can simply be seen in the context
of lower sampling size. Figure 2 depicts the L-moment di-
agrams corresponding to the 12-month SPEI magnitude se-
ries. The plots show high dispersion considering the differ-
ent percentile thresholds. Nevertheless, at low percentiles,
the points do not approximate to the theoretical curve of the
GP distribution, but they conversely tend to approximate to
the GP curve at percentiles between 60th and 80th. Again, the
points exhibited high dispersion at upper percentiles (mostly
above the 85th). An inspection of Figs. SI to S14 in the
Supplement suggests similar patterns for other timescales
and for the drought duration and magnitude series obtained

www.nat-hazards-earth-syst-sci.net/19/611/2019/

using the SPI. Table 1 summarizes the percentage of the
POT series that fit well with the GP distribution following
Anderson—Darling statistics. As listed, the series of drought
magnitude show a better fit to GP distribution than those of
drought duration, but with no considerable differences be-
tween SPI and SPEI. In contrast, we noted remarkable dif-
ferences amongst the different timescales. For example, we
noted that a high percentage of the series obtained for low
percentiles did not fit well to the GP distribution. In con-
trast, for all drought duration and magnitude series, this fit-
ting improved markedly when considering higher percentiles
(mostly above the 40th percentile). The only exceptions were
found for the duration series obtained at a 1-month timescale,
but considering thresholds higher than the 80th percentile
either for SPI or SPEI The total percentage of these series
is close to 100 %. Overall, although the results suggest that
high percentiles (e.g. 90th or 95th) were more appropriate
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Figure 5. Example of probability—probability (P-P) plots for the series of 1-, 3-, 6-, and 12-month SPEI and SPI drought duration and
drought magnitude obtained by means of the 80th percentile used as a threshold to derive the peak-over-threshold series.

to define the series of drought duration and magnitude, our
decision was to define the series using a more relaxed thresh-
old (80th percentile). This decision was motivated mainly by
the notion that L-moment statistics showed high dispersion at
the uppermost percentiles. Furthermore, it was quite difficult
to secure a sufficient sampling size using these upper per-
centiles. Figure 3 shows the number of drought events corre-
sponding to the different percentiles and timescales (i.e. 1, 3,
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6, and 12 months). It can be noted that the number of events
using the 90th and 95th percentile thresholds was very low
for all timescales. This low number of events was statisti-
cally insufficient for the reliable estimation of L-moment and
GP parameters (Table 2). Accordingly, we considered lower
percentiles to get more reliable probabilistic estimations. In
this context, our results indicated that the series of drought
duration and magnitude obtained using the 80th percentile
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Figure 6. Spatial distribution of the weight correlation coefficients from probability—probability (P—P) plots for the series of 1-, 3-, 6-, and
12-month SPEI and SPI drought duration and magnitude series obtained considering the 80th percentile as a threshold for the peak-over-

threshold series.

as a threshold mostly fit to the GP distribution, and the ma-
jority of these series (= 99 %) showed solutions for GP pa-
rameters. Figure 4 depicts the accuracy metrics (i.e. Will-
mott’s D, MAE, and Pearson’s r coefficient), which com-
pare the maximum observed and modelled drought duration
and magnitude for each grid. It can be noted that the agree-
ment between the maximum observed and modelled values
is higher for drought magnitude series than for drought dura-
tion series. However, for drought magnitude and duration se-
ries, this agreement improved when considering higher per-
centiles, especially the 80th percentile. These findings were
clearly evident for the SPI and SPEI and for all timescales.

www.nat-hazards-earth-syst-sci.net/19/611/2019/

Also, we compared the empirical and modelled cumu-
lative distribution functions using the GP distribution con-
sidering the 80th percentile POT series. Comparisons were
made at the pixel scale considering the two drought indices
(SPI vs. SPEI) and the different timescales. A representa-
tive example is shown in Fig. 5 for the grid point located
at 40° N and 3°W. As illustrated, we noted a high agree-
ment between the empirical and modelled CDFs, irrespec-
tive of the drought index and the timescale. However, a lower
agreement was observed for longer timescales (i.e. 6 and 12
months). This can be expected given the low sampling size
at long timescales in comparison to shorter timescales. Over-
all, the weighted correlations between the empirical and the
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Figure 7. Spatial distribution of the parameters of the GP distribution calculated for the SPI duration series.

modelled CDFs showed high values (> 0.98) in all cases,
which was reflected in the general observed pattern for the
whole of Spain. Figure 6 depicts the spatial distribution of
the weighted correlations between the empirical and the GP-
distribution-modelled CDFs using the 80th percentile POT
series. At the 1- and 3-month timescales, the correlations
were close to 1 for all of Spain. The magnitude of correlation
decreased for the 6- and 12-month timescales, despite being
above 0.97 in most areas. Overall, these findings support our
decision to select the 80th percentile and the GP distribution
to statistically model drought duration and magnitude in our
study domain.

3.2 Mapping drought duration and magnitude

Figures 7 and 8 illustrate the spatial distribution of GP pa-
rameters calculated for drought duration series obtained us-
ing the SPI and SPEI respectively. The GP parameters
showed very similar distributions for SPI and SPEI. How-
ever, we found considerable spatial variations in the dis-
tribution of these parameters as a function of the drought
timescale, with higher values of the location (X,) and

Nat. Hazards Earth Syst. Sci., 19, 611-628, 2019

scale (o) parameters for longer timescales. This can be
explained by the increase in drought duration at longer
timescales. The shape (k) parameter exhibited similar range
values for all timescales. Herein, it is difficult to interpret
the geographical distribution of the shape (k), as there is
large uncertainty in estimating this parameter (Rosbjerg et
al., 1992). As illustrated in Figs. S15 and S16, all parameters
showed similar spatial patterns for the drought magnitude se-
ries.

We mapped drought probability for the drought duration
and magnitude series using parameter maps and Eq. (3). Fig-
ure 9 shows the estimated drought duration (in weeks) ob-
tained from the 1-, 3-, 6-, and 12-month SPEI series for
periods of 50 and 100 years. The results suggest impor-
tant spatial differences among drought timescales. For ex-
ample, at the 1-month timescale, the maximum duration
was found in the central areas of Spain, with more than
40 weeks of consecutive negative SPEI values. A similar pat-
tern can also be noted for the 3-month timescale, as central
and southern Spain experience a longer duration. In northern
Spain, the estimated maximum drought duration is almost
half that in central Spain. Nevertheless, the spatial patterns
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Figure 8. Spatial distribution of the parameters of the GP distribution calculated for the SPEI duration series.

of drought probability differ markedly at the timescales of
6 and 12 months, with the maximum duration recorded in
south-eastern and south-western regions and parts of north-
ern and north-eastern Spain. The spatial patterns found at the
12-month timescale closely resemble those observed at the
6-month timescale, suggesting a maximum drought duration
(> 180 weeks) in a period of 50 years over some regions in
the south-west and along the eastern Mediterranean coast. On
the other hand, considering the maximum drought duration
for a period of 100 years, drought events are expected to ex-
tend spatially, especially in southern Spain. Figure 10 reveals
that drought probability maps obtained using SPI are similar
to those obtained using SPEI, although with some spatial dif-
ferences that can mainly be linked to drought timescale. Fig-
ure 11 summarizes the relationship between the maximum
drought duration of SPEI and SPI, considering 1-, 3-, 6-, and
12-month timescales and periods of 50 and 100 years. For
drought duration, the agreement between SPI and SPEI is
stronger considering long timescales. For timescales between
1 and 6 months, the SPEI tends to record higher quantile esti-
mates than SPI. Nevertheless, at the 12-month timescale, the
differences in the quantile estimates between the two indices
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are clearly minimized. For drought magnitude, the quantile
estimates show more consistent spatial patterns for the two
indices compared to those identified for drought duration se-
ries (Figs. S17 to S19).

4 Discussion and conclusions

We developed high-resolution drought probability maps for
Spain using two widely recognized drought indices that are
spatially and temporally comparable: the Standardized Pre-
cipitation Index (SPI) and the Standardized Precipitation
Evapotranspiration Index (SPEI). Although they have simi-
lar conceptual backgrounds, these indices differ in their in-
put variables. Specifically, while the SPI accounts only for
precipitation data (McKee et al., 1993), the SPEI considers
the atmospheric evaporative demand (AED) in its calcula-
tion (Vicente-Serrano et al., 2010). In this study, we com-
puted these two drought indices at different timescales (1, 3,
6, and 12 months). The aim was to assess whether there are
noticeable spatial differences in the obtained drought haz-
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Figure 9. Spatial distribution of the maximum drought duration (in weeks) from the 1-, 3-, 6-, and 12-month SPEI series in a period of 50 and

100 years.

ard probabilities as a function of the selected index and/or
timescale.

We assessed the suitability of the GP distribution to model
drought duration and magnitude events. The results demon-
strate that drought magnitude and duration series mostly fit
well with a GP distribution, a finding that was confirmed
in earlier drought assessment investigations in many regions
worldwide (e.g. Chen et al., 2011; Serra et al., 2016; Vicente-
Serrano and Begueria-Portugués, 2003; Zamani et al., 2015).
In this study, our decision to select the GP distribution was
motivated by the need to achieve a balance between the good-
ness of the fit to the GP distribution on the one hand and the
selection of a representative threshold to obtain the POT se-
ries on the other hand. Our exploratory analysis suggests the
use of the 80th percentile as a threshold. This threshold is a
good balance between the two requirements for the SPI and
SPEI and for all timescales.

In earlier hydrologic and climatic hazards investigations,
a regionalization approach has been employed to estimate
the probability distribution, L-moment statistics, and distri-
bution parameters (e.g. Durrans and Tomic, 1996; Serra et
al., 2016; She et al., 2014). As opposed to these studies, our
preference was given to analyse hazard probability locally.
Specifically, to calculate the L-moment statistics and the dis-
tribution parameters, we considered each gridded cell as an

Nat. Hazards Earth Syst. Sci., 19, 611-628, 2019

independent series. While regionalization is advantageous in
terms of spatial homogeneity and the reduction of param-
eter uncertainty (Hosking and Wallis, 1997), characteriza-
tion of drought conditions in our study domain reveals no-
ticeable spatial differences in response to drought timescale.
This is clearly evident for probabilities of both drought dura-
tion and magnitude. Regionalization is usually based on the
variables used for calculating drought indices (i.e. precipita-
tion or the difference between precipitation and atmospheric
evaporative demand) (Ghosh and Srinivasan, 2016; Habibi
et al., 2018; Santos et al., 2011; Yuan et al., 2013; Zhang
et al., 2015). Importantly, this study stresses that this kind
of regionalization might not be useful when drought haz-
ard differs strongly due to drought timescale. Previous stud-
ies indicated that the spatial patterns of drought may differ
strongly as a function of drought timescale, especially with
different temporal influences of local-regional precipitation
events on drought index values (e.g. Vicente-Serrano, 2006).
This is confirmed in our study for the whole of Spain, where
the spatial patterns of the GP parameters and the maps of
hazard probability strongly vary due to the different drought
timescale. Again, this stresses the difficulty of applying re-
gionalization approaches to obtain maps of drought probabil-
ity. This difficulty is confirmed in this study, as our findings
reveal differences in drought probability as a consequence
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Figure 10. Spatial distribution of the maximum drought duration (in weeks) from the 1-, 3-, 6-, and 12-month SPI series in a period of 50 and
100 years.
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Table 1. Percentage of the peak-over-threshold drought duration and magnitude series that fit well with the generalized Pareto distribution
following Anderson—Darling statistics. Results are summarized for different percentiles and timescales using SPEI and SPI.

Magnitude Duration

1 month 3 months 6 months 12 months 1 month 3 months 6 months 12 months
SPEI
00 98.5 42.8 51.8 68.9 0.0 12.8 51.7 81.6
10th 100.0 91.1 90.4 91.5 3.8 91.0 98.3 99.2
20th 100.0 99.8 99.1 98.4 3.8 94.8 99.1 99.6
30th 100.0 100.0 100.0 99.9 5.6 99.5 99.9 99.9
40th 100.0 100.0 100.0 100.0 8.9 100.0 100.0 100.0
50th 100.0 100.0 100.0 100.0 37.0 100.0 100.0 100.0
60th 100.0 100.0 100.0 100.0 57.9 100.0 100.0 100.0
70th 100.0 100.0 100.0 100.0 84.3 100.0 100.0 100.0
80th 100.0 100.0 100.0 100.0 98.6 100.0 100.0 100.0
90th 100.0 100.0 100.0 100.0 98.8 100.0 100.0 100.0
95th 100.0 100.0 100.0 96.9 98.6 100.0 99.9 98.5
SPI
00 85.8 27.9 41.3 70.9 0.0 6.4 39.2 81.5
10th 99.3 79.9 80.8 88.9 0.1 84.4 96.8 99.1
20th 100.0 99.0 97.3 97.3 0.1 89.8 98.2 99.5
30th 100.0 100.0 99.9 99.7 14 98.0 99.8 99.9
40th 100.0 100.0 100.0 100.0 5.0 99.8 100.0 100.0
50th 100.0 100.0 100.0 100.0 20.8 100.0 100.0 100.0
60th 100.0 100.0 100.0 100.0 45.2 100.0 100.0 100.0
70th 100.0 100.0 100.0 100.0 75.7 100.0 100.0 100.0
80th 100.0 100.0 100.0 100.0 94.4 100.0 100.0 100.0
90th 100.0 100.0 100.0 100.0 98.6 100.0 100.0 99.9
95th 100.0 100.0 100.0 98.2 97.1 99.9 99.9 98.8

Table 2. Percentage of cases in which the solution for the L moment and the generalized Pareto distribution parameters is found for the
peak-over-threshold drought duration—magnitude series at different percentiles from 1-, 3-, 6-, and 12-month SPI and SPEL

1 month 3 months 6 months 12 months 1 month 3 months 6 months 12 months

SPEI SPEI SPEI SPEI SPI SPI SPI SPI

00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
60th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
70th 100.0 100.0 100.0 99.6 100.0 100.0 99.9 99.2
80th 100.0 100.0 99.7 97.4 100.0 99.9 99.3 96.8
90th 99.7 98.5 96.8 79.8 99.5 97.7 96.6 84.9
95th 98.7 86.7 75.9 52.7 96.8 91.1 85.0 52.8

of the selected drought index, which makes this kind of re-
gionalization a challenging task. A possible solution could
be establishing different regionalization schemes based on
the different series of drought indices and timescales. How-
ever, this is practically disadvantageous, as it makes the
use of probability estimations by end users more confusing
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(e.g. stakeholders, decision makers, and local communities).
Also, with the spatial coherence and the observed gradients
of GP parameters, a direct calculation of hazard probabili-
ties at the local scale is highly recommended, particularly in
regions with strong spatial and temporal climatic variability
like Spain. Overall, taking all these limitations into consider-
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ation, this study stresses that employing regionalization ap-
proaches to determine drought hazard probabilities should be
done with caution, especially when different drought indices
and timescales are used.

Assessing the different spatial patterns of drought prob-
abilities as a function of timescales has strong implications
for drought impact assessment and drought mitigation. It
is well-established that different hydrological, agricultural,
and environmental systems respond differently to drought
timescales (Pasho et al., 2012; Pefia-Gallardo et al., 2018;
Vicente-Serrano, 2013). As such, for more effective assess-
ment and monitoring of drought hazard, drought timescales
must be linked to specific drought impacts. This is basically
because although drought probability can differ in response
to drought timescale, the impacts of drought hazard may
vary considerably from one region to another due to different
environmental and socioeconomic factors. Correspondingly,
the degree of vulnerability can differ according to drought
timescale and region. For example, although with the high
probability of occurrence of an extreme drought event at a
certain timescale in a particular region, drought risk may be
small if the sensitivity to drought timescale is low. This con-
firms that it is essential to obtain drought hazard probabil-
ity maps at different timescales. Practically, the real hazard
would be definitely derived from a drought timescale that
triggers impacts in a given space and sector.

Recently, there has been a great debate on the influence
of climate change processes on drought severity (Dai, 2013;
Sheffield et al., 2012; Trenberth et al., 2014). This debate
is largely motivated by the role of warming processes and
the atmospheric evaporative demand in drought severity. Nu-
merous studies have shown a noticeable increase in the AED
across the Mediterranean region, which could enhance the
severity of drought events in comparison to events driven
mainly by precipitation deficit (Stagge et al., 2017; Vicente-
Serrano et al., 2014). Here, we indicated that, mainly at
timescales from 1 to 6 months, SPEI duration and magni-
tude values are higher than those of the SPI. This finding
suggests that the increased AED due to warming processes
may have a certain role in increasing drought duration and
magnitude hazard probabilities in Spain. When a drought
event occurs as a consequence of a precipitation deficit, high
values of the AED can increase the magnitude and duration
of drought events. However, this pattern was not observed
for long drought timescales (i.e. 12 months), which showed
small differences between the SPI and SPEI drought dura-
tion and magnitude quantile maps. This could be explained
by the strong seasonality that characterizes the climate of
Spain. This can be seen for the 12-month timescale, which
summarizes the annual climate conditions. As indicated by
Vicente-Serrano et al. (2014), the role of increased AED
(mostly recorded during summer months) would be dimin-
ished in comparison to the role of precipitation. In contrast,
the role of the AED would be more highlighted at shorter
timescales that record stronger seasonal variability.
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Assessing drought hazard probability by means of joint
probabilities of drought duration and magnitude has been ap-
plied in more depth through the use of copulas (e.g. Ganguli
and Reddy, 2012; Liu et al., 2011; Zhang et al., 2015). Nev-
ertheless, given the nature of drought indices, the time se-
ries exhibit strong temporal autocorrelation, and accordingly
the duration and magnitude of particular drought events can
show high agreement. Here, we found a strong correlation
between the magnitude and the duration of drought events for
the selected drought indices and timescales. This indicates
that — as expected — the total magnitude of an event is pro-
portional to drought duration. Therefore, although copulas
could give some additional information for particular events,
we still believe that an accurate evaluation of drought haz-
ard probability in Spain using a univariate approach is more
advantageous.

Recalling the strong spatial differences in the drought haz-
ard probability over Spain, the maps obtained in this study
can contribute to better management practices for differ-
ent sectors, including agriculture, water resources manage-
ment, urban water supply, tourism, and environmental man-
agement. The spatial quantile probabilities developed in this
study, combined with those estimated for 50 and 100 years,
are fully accessible to the research community and end users
via the web repository of the Spanish National Research
Council (CSIC) (Dominguez-Castro et al., 2019b).

Data availability. The Generalized Pareto parameters and drought
risk maps developed in this study are accessible at http://digital.csic.
es/handle/10261/178150 (Dominguez-Castro et al., 2019b).
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