209 research outputs found

    Vibrational nonequilibrium effects in the conductance of single-molecules with multiple electronic states

    Full text link
    Vibrational nonequilibrium effects in charge transport through single-molecule junctions are investigated. Focusing on molecular bridges with multiple electronic states, it is shown that electronic-vibrational coupling triggers a variety of vibronic emission and absorption processes, which influence the conductance properties and mechanical stability of single-molecule junctions profoundly. Employing a master equation and a nonequilibrium Green's function approach, these processes are analyzed in detail for a generic model of a molecular junction and for benzenedibutanethiolate bound to gold electrodes.Comment: 5 pages, 4 figure

    Vibronic effects on resonant electron conduction through single molecule junctions

    Full text link
    The influence of vibrational motion on electron conduction through single molecules bound to metal electrodes is investigated employing first-principles electronic-structure calculations and projection-operator Green's function methods. Considering molecular junctions where a central phenyl ring is coupled via (alkane)thiol-bridges to gold electrodes, it is shown that -- depending on the distance between the electronic π\pi-system and the metal -- electronic-vibrational coupling may result in pronounced vibrational substructures in the transmittance, a significantly reduced current as well as a quenching of negative differential resistance effects.Comment: Submitted to Chem. Phys. Lett. (13 pages, 5 figures) this version: typos and formating correcte

    Vibrational Instabilities in Resonant Electron Transport through Single-Molecule Junctions

    Full text link
    We analyze various limits of vibrationally coupled resonant electron transport in single-molecule junctions. Based on a master equation approach, we discuss analytic and numerical results for junctions under a high bias voltage or weak electronic-vibrational coupling. It is shown that in these limits the vibrational excitation of the molecular bridge increases indefinitely, i.e. the junction exhibits a vibrational instability. Moreover, our analysis provides analytic results for the vibrational distribution function and reveals that these vibrational instabilities are related to electron-hole pair creation processes.Comment: 19 pages, 3 figure

    Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current

    Full text link
    Quantum interference effects and decoherence mechanisms in single-molecule junctions are analyzed employing a nonequilibrium Green's function approach. Electrons tunneling through quasi-degenerate states of a nanoscale molecular junction exhibit interference effects. We show that electronic-vibrational coupling, inherent to any molecular junction, strongly quenches such interference effects. As a result, the electrical current can be significantly larger than without electronic-vibrational coupling. The analysis reveals that the quenching of quantum interference is particularly pronounced if the junction is vibrationally highly excited, e.g. due to current-induced nonequilibrium effects in the resonant transport regime.Comment: 11 pages, 4 figure

    Modeling charge transport in C60-based self-assembled monolayers for applications in field-effect transistors

    Get PDF
    We have investigated the conductance properties of C60-containing self-assembled monolayers (SAMs), which are used in organic field-effect transistors, employing a combination of molecular-dynamics simulations, semiempirical electronic structure calculations and Landauer transport theory. The results reveal the close relation between the transport characteristics and the structural and electronic properties of the SAM. Furthermore, both local pathways of charge transport in the SAMs and the influence of structural fluctuations are analyzed.Comment: 10 figure
    corecore