research

Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current

Abstract

Quantum interference effects and decoherence mechanisms in single-molecule junctions are analyzed employing a nonequilibrium Green's function approach. Electrons tunneling through quasi-degenerate states of a nanoscale molecular junction exhibit interference effects. We show that electronic-vibrational coupling, inherent to any molecular junction, strongly quenches such interference effects. As a result, the electrical current can be significantly larger than without electronic-vibrational coupling. The analysis reveals that the quenching of quantum interference is particularly pronounced if the junction is vibrationally highly excited, e.g. due to current-induced nonequilibrium effects in the resonant transport regime.Comment: 11 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions