Quantum interference effects and decoherence mechanisms in single-molecule
junctions are analyzed employing a nonequilibrium Green's function approach.
Electrons tunneling through quasi-degenerate states of a nanoscale molecular
junction exhibit interference effects. We show that electronic-vibrational
coupling, inherent to any molecular junction, strongly quenches such
interference effects. As a result, the electrical current can be significantly
larger than without electronic-vibrational coupling. The analysis reveals that
the quenching of quantum interference is particularly pronounced if the
junction is vibrationally highly excited, e.g. due to current-induced
nonequilibrium effects in the resonant transport regime.Comment: 11 pages, 4 figure