26 research outputs found

    Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers

    Get PDF
    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society

    OLED on silicon for sensor applications

    No full text
    We present two different approaches of OLED devices that are suitable for lab-on-a-chip applications. These include near UV electroluminescence (EL) and optically filtered green light to spectrally separate excitation from sample emission peaks. Both device architectures can be used for large-area deposition as wel as integration onto Silicon-CMOS backplanes

    White organic light-emitting diodes: Status and perspective

    No full text
    White organic light-emitting diodes (OLEDs) are ultrathin, large-area light sources made from organic semiconductor materials. Over the past decades, much research has been spent on finding suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color tunability, and color quality, white OLEDs are emerging as one of the next-generation light sources. In this review, the physics of a variety of device concepts that have been introduced to realize white OLEDs based on both polymer and small-molecule organic materials are discussed. Owing to the fact that about 80% of the internally generated photons are trapped within the thin-film layer structure, a second focus is put on reviewing promising concepts for improved light outcoupling
    corecore