5 research outputs found

    Intrinsic Superconductivity at 25 K in Highly Oriented Pyrolytic Graphite

    Full text link
    High resolution magnetoresistance data in highly oriented pyrolytic graphite thin samples manifest non-homogenous superconductivity with critical temperature Tc∼25T_c \sim 25 K. These data exhibit: i) hysteretic loops of resistance versus magnetic field similar to Josephson-coupled grains, ii) quantum Andreev's resonances and iii) absence of the Schubnikov-de Haas oscillations. The results indicate that graphite is a system with non-percolative superconducting domains immersed in a semiconducting-like matrix. As possible origin of the superconductivity in graphite we discuss interior-gap superconductivity when two very different electronic masses are present.Comment: 5 pages, 3 figure

    Superconducting properties of [BaCuO_x]_2/[CaCuO_2]_n artificial structures with ultrathick CaCuO_2 blocks

    Full text link
    The electrical transport properties of [BaCuO_x]_2/[CaCuO_2]_n (CBCCO-2xn)underdoped high temperature superconducting superlattices grown by Pulsed Laser Deposition have been investigated. Starting from the optimally doped CBCCO-2x2 superlattice, having three CuO_2 planes and T_c around 80 K, we have systematically increased the number n up to 15 moving toward the underdoped region and hence decreasing T_c. For n>11 the artificial structures are no longer superconducting, as expected, for a uniformly distributed charge carriers density inside the conducting block layer. The sheet resistance of such artificial structures (n nearly equal to 11) turns out to be quite temperature independent and close to the 2D quantum resistance 26 kOhm. A further increase of the number of CuO_2 planes results in an insulator-type dependence of R(T) in the wide range of temperatures from room temperature to 1 K. The value of the sheet resistance separating the Superconducting and the Insulating regimes supports the fermionic scenario of the Superconductor-Insulator transition in these systems.Comment: 12 pages, 5 figures. Corresponding author: [email protected]

    Activation energy in La 0.7 Ca 0.3 MnO 3/YBa 2Cu 3O 7-δ / La 0.7 Ca 0.3 MnO 3 superconducting trilayers

    No full text
    Resistivity vs. temperature measurements on La 0.7 Ca 0.3 MnO 3/YBa 2Cu 3O 7-δ /La 0.7 Ca 0.3 MnO 3 (LCMO/YBCO/LCMO) trilayers with different YBCO thickness, were performed in external magnetic field H up to 8 T. By evaluating the activation energy U from the slope of the resistivity Arrhenius plot, a strong depression of U has been observed when decreasing the YBCO layer thickness and the absolute U values appear to be reduced with respect to the values reported in literature in the case of YBCO thin films and YBCO/insulating multilayers. Moreover, a logarithmic U vs. H dependence is shown both in the case of thick and thin YBCO layers indicating the formation of a two dimensional vortex lattice. The experimental data are discussed considering the strong influence of the ferromagnetic LCMO on the superconducting YBCO properties which reduces the effective YBCO thickness more than predicted by the conventional theories. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200674.25.Qt Vortex lattices, flux pinning, flux creep, 75.47.Lx Manganites, 74.78.Fk Multilayers, superlattices, heterostructures,
    corecore