113 research outputs found
Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As
We report single-color, time resolved magneto-optical measurements in
ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control
of the magnetization precession by applying two successive ultrashort laser
pulses. The magnetic field and temperature dependent experiments reveal the
collective Mn-moment nature of the oscillatory part of the time-dependent Kerr
rotation, as well as contributions to the magneto-optical signal that are not
connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter
Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation
Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene.
Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene.
Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting.
Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children
Should patients with kearns-sayre syndrome and corneal endothelial failure be genotyped for a TCF4 trinucleotide repeat, commonly associated with fuchs endothelial corneal dystrophy?
The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells
KDIGO Controversies Conference on onco-nephrology: understanding kidney impairment and solid-organ malignancies, and managing kidney cancer
The association between kidney disease and cancer is multifaceted and complex. Persons with chronic kidney disease (CKD) have an increased incidence of cancer, and both cancer and cancer treatments can cause impaired kidney function. Renal issues in the setting of malignancy can worsen patient outcomes and diminish the adequacy of anticancer treatments. In addition, the oncology treatment landscape is changing rapidly, and data on tolerability of novel therapies in patients with CKD are often lacking. Caring for oncology patients has become more specialized and interdisciplinary, currently requiring collaboration among specialists in nephrology, medical oncology, critical care, clinical pharmacology/pharmacy, and palliative care, in addition to surgeons and urologists. To identify key management issues in nephrology relevant to patients with malignancy, KDIGO (Kidney Disease: Improving Global Outcomes) assembled a global panel of multidisciplinary clinical and scientific expertise for a controversies conference on onco-nephrology in December 2018. This report covers issues related to kidney impairment and solid organ malignancies as well as management and treatment of kidney cancer. Knowledge gaps, areas of controversy, and research priorities are described
Analysis of neural crest-derived clones reveals novel aspects of facial development
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth
Prioritizing Environmental Issues around the World: Opinions from an International Central and Eastern European Environmental Health Conference
BACKGROUND: As the next generation of scientists enters the field of environmental health, it is imperative that they view their contributions in the context of global environmental stewardship. In this commentary, a group of international graduate students facilitated by three experienced environmental health scientists present their views on what they consider to be the global environmental health concerns of today. This group convened initially in October 2004 at an international health conference in Prague, Czech Republic. OBJECTIVES: In this report we identify perceived environmental health concerns that exist around the world, with a focus on Central and Eastern Europe. Additionally, we address these perceived problems and offers some potential solutions. DISCUSSION: At the meeting, students were invited to participate in two panel discussions. One group of young international scientists identified several significant global environmental health concerns, including air pollution, occupational hazards, and risk factors that may exacerbate current environmental health issues. The second panel determined that communication, education, and regulation were the mechanisms for addressing current environmental challenges. CONCLUSIONS: In this commentary we expand on the views presented at the meeting and represent the concerns of young investigators from nine different countries. We provide ideas about and support the exchange of information between developed and developing countries on how to handle the environmental health challenges that face the world today
Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates
- …