79 research outputs found

    Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery

    Get PDF
    Extracellular vesicles (EVs) in human blood are a potential source of biomarkers. To which extent anticoagulation affects their concentration, cellular origin and protein composition is largely unexplored. To study this, blood from 23 healthy subjects was collected in acid citrate dextrose (ACD), citrate or EDTA, or without anticoagulation to obtain serum. EVs were isolated by ultracentrifugation or by size-exclusion chromatography (SEC) for fluorescence-SEC. EVs were analyzed by micro flow cytometry, NTA, TEM, Western blot, and protein mass spectrometry. The plasma EV concentration was unaffected by anticoagulants, but serum contained more platelet EVs. The protein composition of plasma EVs differed between anticoagulants, and between plasma and serum. Comparison to other studies further revealed that the shared EV protein composition resembles the "protein corona" of synthetic nanoparticles incubated in plasma or serum. In conclusion, we have validated a higher concentration of platelet EVs in serum than plasma by contemporary EV methods. Anticoagulation should be carefully described (i) to enable study comparison, (ii) to utilize available sample cohorts, and (iii) when preparing/selecting biobank samples. Further, the similarity of the EV protein corona and that of nanoparticles implicates that EVs carry both intravesicular and extravesicular cargo, which will expand their applicability for biomarker discovery.Peer reviewe

    Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes

    Get PDF
    Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi) RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV-and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 10(10) EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p <0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials.Peer reviewe

    The association between subgroups of MRI findings identified with latent class analysis and low back pain in 40-year old Danes

    Get PDF
    Background: Research into the clinical importance of spinal MRI findings in patients with low back pain (LBP) has primarily focused on single imaging findings, such as Modic changes or disc degeneration, and found only weak associations with the presence of pain. However, numerous MRI findings almost always co-exist in the lumbar spine and are often present at more than one lumbar level. It is possible that multiple MRI findings are more strongly associated with LBP than single MRI findings. Latent Class Analysis is a statistical method that has recently been tested and found useful for identifying latent classes (subgroups) of MRI findings within multivariable datasets. The purpose of this study was to investigate the association between subgroups of MRI findings and the presence of LBP in people from the general population. Methods: To identify subgroups of lumbar MRI findings with potential clinical relevance, Latent Class Analysis was initially performed on a clinical dataset of 631 patients seeking care for LBP. Subsequently, 412 participants in a general population cohort (the ‘Backs on Funen’ project) were statistically allocated to those existing subgroups by Latent Class Analysis, matching their MRI findings at a segmental level. The subgroups containing MRI findings from the general population were then organised into hypothetical pathways of degeneration and the association between subgroups in the pathways and the presence of LBP was tested using exact logistic regression. Results: Six subgroups were identified in the clinical dataset and the data from the general population cohort fitted the subgroups well, with a median posterior probability of 93%–100%. These six subgroups described two pathways of increasing degeneration on upper (L1-L3) and lower (L4-L5) lumbar levels. An association with LBP was found for the subgroups describing severe and multiple degenerative MRI findings at the lower lumbar levels but none of the other subgroups were associated with LBP

    Genetic susceptibility of intervertebral disc degeneration among young Finnish adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration (DD) is a common condition that progresses with aging. Although the events leading to DD are not well understood, a significant genetic influence has been found. This study was undertaken to assess the association between relevant candidate gene polymorphisms and moderate DD in a well-defined and characterized cohort of young adults. Focusing on young age can be valuable in determining genetic predisposition to DD.</p> <p>Methods</p> <p>We investigated the associations of existing candidate genes for DD among 538 young adults with a mean age of 19 belonging to the 1986 Northern Finland Birth Cohort. Nineteen single nucleotide polymorphisms (SNP) in 16 genes were genotyped. We evaluated lumbar DD using the modified Pfirrmann classification and a 1.5-T magnetic resonance scanner for imaging.</p> <p>Results</p> <p>Of the 538 individuals studied, 46% had no degeneration, while 54% had DD and 51% of these had moderate DD. The risk of DD was significantly higher in subjects with an allele G of <it>IL6 </it>SNPs rs1800795 (OR 1.45, 95% CI 1.07-1.96) and rs1800797 (OR 1.37, 95% CI 1.02-1.85) in the additive inheritance model. The role of <it>IL6 </it>was further supported by the haplotype analysis, which resulted in an association between the GGG haplotype (SNPs rs1800797, rs1800796 and rs1800795) and DD with an OR of 1.51 (95% CI 1.11-2.04). In addition, we observed an association between DD and two other polymorphisms, <it>SKT </it>rs16924573 (OR 0.27 95% CI 0.07-0.96) and <it>CILP </it>rs2073711 in women (OR 2.04, 95% CI 1.07-3.89).</p> <p>Conclusion</p> <p>Our results indicate that <it>IL6</it>, <it>SKT </it>and <it>CILP </it>are involved in the etiology of DD among young adults.</p

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    Noggin null allele mice exhibit a microform of holoprosencephaly

    Full text link
    Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling. Noggin(-/-) mice exhibited a solitary median maxillary incisor that developed from a single dental placode, early midfacial narrowing as well as abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ. In Noggin(-/-) mice, the expression domains of Shh, as well as the Shh target genes Ptch1 and Gli1, were reduced in the frontonasal region at key stages of early facial development. Using E10.5 facial cultures, we show that excessive BMP4 results in reduced Fgf8 and Ptch1 expression. These data suggest that increased Bmp signaling in Noggin(-/-) mice results in downregulation of the hedgehog pathway at a critical stage when the midline craniofacial structures are developing, which leads to a phenotype consistent with a microform of HPE
    corecore