6,898 research outputs found

    Power law velocity fluctuations due to inelastic collisions in numerically simulated vibrated bed of powder}

    Full text link
    Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain near their local stable states, the probability distribution is Gaussian. On the other hand, in the fluidized phase, where the particles can exchange their positions, the distribution clearly deviates from Gaussian. This is interpreted with two analogies; aggregation processes and soft-to-hard turbulence transition in thermal convection. The non-Gaussian distribution is well-approximated by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions in the former analogy.Comment: 7 pages, using REVTEX (Figures are inculded in text body) %%%Replacement due to rivision (Europhys. Lett., in press)%%

    Mode engineering with a one-dimensional superconducting metamaterial

    Full text link
    We propose a way to control the Josephson energy of a single Josephson junction embedded in one- dimensional superconducting metamaterial: an inhomogeneous superconducting loop, made out of a superconducting nanowire or a chain of Josephson junctions. The Josephson energy is renormalized by the electromagnetic modes propagating along the loop. We study the behaviour of the modes as well as of their frequency spectrum when the capacitance and the inductance along the loop are spatially modulated. We show that, depending on the amplitude of the modulation, the renormalized Josephson energy is either larger or smaller than the one found for a homogeneous loop. Using typical experimental parameters for Josepshon junction chains and superconducting nanowires, we conclude that this mode-engineering can be achieved with currently available metamaterials

    Quality engineering of a traction alternator by robust design

    Get PDF
    Robust design is an engineering methodology for improving productivity during research and development so that high-quality products can be developed and produced quickly and at low cost. A large electrical company was developing traction alternators for a diesel electrical engine. Customer requirement was to obtain very high efficiency which, in turn, was influenced by several design parameters. The usual approach of the 'design-build-test' cycle was considered time-consuming and costly; it used to take anywhere from 4 months to 1 year before finalizing the product design parameters as it involved physical assembly and also testing. Instead, the authors used Taguchi's parameter design approach. This approach took about 8 weeks to arrive at optimum design parameter values; clearly demonstrating the cutting edge of this methodology over the traditional design-build-test approach. The prototype built and tested accordingly gave satisfactory overall performance, meeting and even exceeding customer requirements

    Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag

    Full text link
    We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn L2,3L_{2,3} white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At L3L_3 excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around L2L_2, and between L3L_3 and L2L_2, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite'' structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-dd orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn L2,3L_{2,3} region may be used as a sensitive probe of the local environment of Mn atoms.Comment: 9 pages, 11 figure

    Pure Anderson Motives and Abelian \tau-Sheaves

    Full text link
    Pure t-motives were introduced by G. Anderson as higher dimensional generalizations of Drinfeld modules, and as the appropriate analogs of abelian varieties in the arithmetic of function fields. In order to construct moduli spaces for pure t-motives the second author has previously introduced the concept of abelian \tau-sheaf. In this article we clarify the relation between pure t-motives and abelian \tau-sheaves. We obtain an equivalence of the respective quasi-isogeny categories. Furthermore, we develop the elementary theory of both structures regarding morphisms, isogenies, Tate modules, and local shtukas. The later are the analogs of p-divisible groups.Comment: final version as it appears in Mathematische Zeitschrif

    Hydrodynamic Description of Granular Convection

    Full text link
    We present a hydrodynamic model that captures the essence of granular dynamics in a vibrating bed. We carry out the linear stability analysis and uncover the instability mechanism that leads to the appearance of the convective rolls via a supercritical bifurcation of a bouncing solution. We also explicitly determine the onset of convection as a function of control parameters and confirm our picture by numerical simulations of the continuum equations.Comment: 14 pages, RevTex 11pages + 3 pages figures (Type csh

    Theory of coherent quantum phase-slips in Josephson junction chains with periodic spatial modulations

    Full text link
    We study coherent quantum phase-slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Sch\"on modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude

    Low-energy excitations in electron-doped metal phthalocyanine from NMR in Li0.5_{0.5}MnPc

    Full text link
    7^7Li and 1^1H NMR and magnetization measurements in \lpc (Pc≡\equivC32_{32}H16_{16}N8_8), recently proposed as a strongly correlated metal, are presented. Two different low-frequency dynamics are evidenced. The first one, probed by 1^1H nuclei gives rise to a slowly relaxing magnetization at low temperature and is associated with the freezing of MnPc S=3/2S=3/2 spins. This dynamic is similar to the one observed in pristine β\beta-MnPc and originates from Li depleted chain segments. The second one, evidenced by 7^7Li spin-lattice relaxation rate, is associated with the hopping of the electrons along Li-rich chains. The characteristic correlation times for the two dynamics are derived and the role of disorder is briefly discussed.Comment: 7 two-columns pages, 11 figure
    • …
    corecore