25,015 research outputs found

    A novel steganography approach for audio files

    Get PDF
    We present a novel robust and secure steganography technique to hide images into audio files aiming at increasing the carrier medium capacity. The audio files are in the standard WAV format, which is based on the LSB algorithm while images are compressed by the GMPR technique which is based on the Discrete Cosine Transform (DCT) and high frequency minimization encoding algorithm. The method involves compression-encryption of an image file by the GMPR technique followed by hiding it into audio data by appropriate bit substitution. The maximum number of bits without significant effect on audio signal for LSB audio steganography is 6 LSBs. The encrypted image bits are hidden into variable and multiple LSB layers in the proposed method. Experimental results from observed listening tests show that there is no significant difference between the stego audio reconstructed from the novel technique and the original signal. A performance evaluation has been carried out according to quality measurement criteria of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR)

    Optimal control of a dengue epidemic model with vaccination

    Get PDF
    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.Comment: This is a preprint of a paper accepted for presentation at ICNAAM 2011, Halkidiki, Greece, 19-25 September 2011, and to appear in AIP Conference Proceedings, volume 138

    Modeling and Optimal Control Applied to a Vector Borne Disease

    Full text link
    A model with six mutually-exclusive compartments related to Dengue disease is presented. In this model there are three vector control tools: insecticides (larvicide and adulticide) and mechanical control. The problem is studied using an Optimal Control (OC) approach. The human data for the model is based on the Cape Verde Dengue outbreak. Some control measures are simulated and their consequences analyzed

    Insecticide control in a Dengue epidemics model

    Get PDF
    A model for the transmission of dengue disease is presented. It consists of eight mutually-exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquitoes. The main goal of this work is to investigate the best way to apply the control in order to effectively reduce the number of infected humans and mosquitoes. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.Comment: Accepted 28/07/2010 in the special session "Numerical Optimization" of the 8th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), Rhodes, Greece, 19-25 September 201

    Dynamics of Dengue epidemics using optimal control

    Get PDF
    We present an application of optimal control theory to Dengue epidemics. This epidemiologic disease is an important theme in tropical countries due to the growing number of infected individuals. The dynamic model is described by a set of nonlinear ordinary differential equations, that depend on the dynamic of the Dengue mosquito, the number of infected individuals, and the people's motivation to combat the mosquito. The cost functional depends not only on the costs of medical treatment of the infected people but also on the costs related to educational and sanitary campaigns. Two approaches to solve the problem are considered: one using optimal control theory, another one by discretizing first the problem and then solving it with nonlinear programming. The results obtained with OC-ODE and IPOPT solvers are given and discussed. We observe that with current computational tools it is easy to obtain, in an efficient way, better solutions to Dengue problems, leading to a decrease of infected mosquitoes and individuals in less time and with lower costs.Comment: Submitted to Mathematical and Computer Modelling 25/Oct/2009; accepted for publication, after revision, 22/June/201

    Optimization of Dengue Epidemics: a test case with different discretization schemes

    Get PDF
    The incidence of Dengue epidemiologic disease has grown in recent decades. In this paper an application of optimal control in Dengue epidemics is presented. The mathematical model includes the dynamic of Dengue mosquito, the affected persons, the people's motivation to combat the mosquito and the inherent social cost of the disease, such as cost with ill individuals, educations and sanitary campaigns. The dynamic model presents a set of nonlinear ordinary differential equations. The problem was discretized through Euler and Runge Kutta schemes, and solved using nonlinear optimization packages. The computational results as well as the main conclusions are shown.Comment: Presented at the invited session "Numerical Optimization" of the 7th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2009), Rethymno, Crete, Greece, 18-22 September 2009; RepositoriUM, id: http://hdl.handle.net/1822/1083
    • …
    corecore