6,717 research outputs found

    Conductance of Disordered Wires with Symplectic Symmetry: Comparison between Odd- and Even-Channel Cases

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by numerical simulations on the basis of a tight-binding model on a square lattice consisting of M lattice sites in the transverse direction. If the potential range of scatterers is much larger than the lattice constant, the number N of conducting channels becomes odd (even) when M is odd (even). The average dimensionless conductance g is calculated as a function of system length L. It is shown that when N is odd, the conductance behaves as g --> 1 with increasing L. This indicates the absence of Anderson localization. In the even-channel case, the ordinary localization behavior arises and g decays exponentially with increasing L. It is also shown that the decay of g is much faster in the odd-channel case than in the even-channel case. These numerical results are in qualitative agreement with existing analytic theories.Comment: 4 page

    On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system

    Full text link
    This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to re-determine the planet masses and to explore techniques able to determine mass and elements of planets discovered around active stars when the relative variation of the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) The approach proposed by Hatzes et al. (2010) using only those nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system; the periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2,454,847 - 873 are used because they include many nights with multiple observations; otherwise it is not possible to separate the effects of the rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). The results of the various approaches are combined to give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6 \pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given.The results obtained with 3 different approaches agree to give masses larger than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 . CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure

    Random-Matrix Theory of Electron Transport in Disordered Wires with Symplectic Symmetry

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been believed that Anderson localization inevitably arises in ordinary disordered wires. A counterexample is recently found in the systems with symplectic symmetry, where one perfectly conducting channel is present even in the long-wire limit when the number of conducting channels is odd. This indicates that the odd-channel case is essentially different from the ordinary even-channel case. To study such differences, we derive the DMPK equation for transmission eigenvalues for both the even- and odd- channel cases. The behavior of dimensionless conductance is investigated on the basis of the resulting equation. In the short-wire regime, we find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. We also find that the variance does not depend on whether the number of channels is even or odd. In the long-wire regime, it is shown that the dimensionless conductance in the even-channel case decays exponentially as --> 0 with increasing system length, while --> 1 in the odd-channel case. We evaluate the decay length for the even- and odd-channel cases and find a clear even-odd difference. These results indicate that the perfectly conducting channel induces clear even-odd differences in the long-wire regime.Comment: 28pages, 5figures, Accepted for publication in J. Phys. Soc. Jp

    A random matrix approach to decoherence

    Get PDF
    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.Comment: 11 pages, 5 eps-figure

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model

    Full text link
    We propose an information-theoretic model for the transport of waves through a chaotic cavity in the presence of absorption. The entropy of the S-matrix statistical distribution is maximized, with the constraint =αn =\alpha n: n is the dimensionality of S, and 0≀α≀1,α=0(1)0\leq \alpha \leq 1, \alpha =0(1) meaning complete (no) absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential -Rayleigh statistics- even for n=1. For n≫1n\gg 1 Rayleigh statistics is attained even with no absorption; here we extend the study to α<1\alpha <1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in the latter regime, some important physical constraint is missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Path Integral Approach to the Scattering Theory of Quantum Transport

    Full text link
    The scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors to their transfer matrix \bbox{T}. We introduce a novel approach to the statistics of transport quantities which expresses the probability distribution of \bbox{T} as a path integral. The path integal is derived for a model of conductors with broken time reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose probability distribution for the eigenvalues of \bbox{TT}^{\dagger} is equivalent to the DMPK equation independent of the values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds to diffusion on the coset space of the transfer matrix group. It is shown that the saddle point of the path integral corresponds to ballistic conductors with large conductances. We solve the saddle point equation and recover random matrix theory from the saddle point approximation to the path integral.Comment: REVTEX, 9 pages, no figure
    • 

    corecore