99,983 research outputs found

    Breaking of Larmor's theorem in quantum Hall states with spin-orbit coupling

    Get PDF
    We investigate the effect of spin-orbit (SO) interaction on the long-wavelength collective spin excitation in a two-dimensional electron gas in the fractional quantum Hall regime. The many-body correction to the single-particle electron spin resonance (ESR) energy is found to be nonzero, providing theoretical evidence of a breaking of Larmor's theorem. Such breaking is due to the loss of spin-rotational invariance introduced by the SO-induced structural inversion asymmetry in the system. This effect, whose magnitude is a significant percentage of the single-particle ESR, exhibits remarkable features in a wide range of experimentally relevant parameters and is found to be nearly material independent

    Strong magnetic fluctuations in superconducting state of CeCoIn5_5

    Full text link
    We show results on the vortex core dissipation through current-voltage measurements under applied pressure and magnetic field in the superconducting phase of CeCoIn5_5. We find that as soon as the system becomes superconducting, the vortex core resistivity increases sharply as the temperature and magnetic field decrease. The sharp increase in flux flow resistivity is due to quasiparticle scattering on critical antiferromagnetic fluctuations. The strength of magnetic fluctuations below the superconducting transition suggests that magnetism is complimentary to superconductivity and therefore must be considered in order to fully account for the low-temperature properties of CeCoIn5_5.Comment: 7 pages, 6 figure

    Anomalous Paramagnetic Magnetization in Mixed State of CeCoIn5_5 single crystals

    Full text link
    Magnetization and torque measurements were performed on CeCoIn5_5 single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The paramagnetic magnetization is suppressed in the mixed state with the spin susceptibility increasing with increasing magnetic field. The dependence of spin susceptibility on magnetic field is due to the fact that heavy electrons contribute both to superconductivity and paramagnetism and a large Zeeman effect exists in this system. No anomaly in the vortex response was found within the investigated temperature and field range

    Description of hysteretic current-voltage characteristics of SNS junctions

    Full text link
    Simplified model for current-voltage characteristics of weak links is suggested. It is based on an approach considering the multiple Andreev reflection in metallic Josephson junction. The model allows to calculate current-voltage characteristics of the superconductor - normal metal - superconductor junctions with different thicknesses of normal layer at different temperatures. A hysteretic peculiarity of V(I)V(I) dependence is described as result of the negative differential resistance. The current-voltage characteristic of high-TcT_c composite YBCO +BaPbO3{_3} were computed.Comment: 9 pages, 5 figures, submited to Supercond. Sci. Technol, replased Fig.5 for more correct comparison with experimen

    Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model

    Get PDF
    In this paper, it is shown that a configuration modulated system described by the Frenkel-Kontorova model can be locked at an incommensurate phase when the quantum zero point energy is taken into account. It is also found that the specific heat for an incommensurate phase shows different parameter-dependence in sliding phase and pinning phase. These findings provide a possible way for experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure
    corecore