25,529 research outputs found
Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel
The statistical-thermodynamic dislocation theory developed in previous papers
is used here in an analysis of high-temperature deformation of aluminum and
steel. Using physics-based parameters that we expect theoretically to be
independent of strain rate and temperature, we are able to fit experimental
stress-strain curves for three different strain rates and three different
temperatures for each of these two materials. Our theoretical curves include
yielding transitions at zero strain in agreement with experiment. We find that
thermal softening effects are important even at the lowest temperatures and
smallest strain rates.Comment: 7 pages, 8 figure
Thermal reaction of Al/Ti bilayers with contaminated interface
We have studied some new aspects of thermal reactions in Al/Ti bilayers in which the interface is purposely contaminated with oxygen. After annealing at a temperature of 460 °C, an Al_3Ti compound forms at the interface, moreover some Al diffuses through the Ti to form a compound at the free surface. The amount of aluminum at the free surface can be as large as at the interface. Nucleation and lateral growth of Al_3Ti at the interface are locally unfavorable. This results in a competition between the lateral growth of Al_3Ti at the Al/Ti interface and the diffusion of Al to the free surface. Once full coverage by Al_3Ti is obtained at the Al/Ti interface, the diffusion of Al to the surface becomes negligible
Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition
We consider the motion of red blood cells and other non-spherical
microcapsules dilutely suspended in a simple shear flow. Our analysis indicates
that depending on the viscosity, membrane elasticity, geometry and shear rate,
the particle exhibits either tumbling, tank-treading of the membrane about the
viscous interior with periodic oscillations of the orientation angle, or
intermittent behavior in which the two modes occur alternately. For red blood
cells, we compute the complete phase diagram and identify a novel
tank-treading-to-tumbling transition at low shear rates. Observations of such
motions coupled with our theoretical framework may provide a sensitive means of
assessing capsule properties.Comment: 11 pages, 4 figure
Closed-form Absorption Probability of Certain D=5 and D=4 Black Holes and Leading-Order Cross-Section of Generic Extremal p-branes
We obtain the closed-form absorption probabilities for minimally-coupled
massless scalars propagating in the background of D=5 single-charge and D=4
two-charge black holes. These are the only two examples of extremal black holes
with non-vanishing absorption probabilities that can be solved in closed form
for arbitrary incident frequencies. In both cases, the absorption probability
vanishes when the frequency is below a certain threshold, and we discuss the
connection between this phenomenon and the behaviour of geodesics in these
black hole backgrounds. We also obtain leading-order absorption cross-sections
for generic extremal p-branes, and show that the expression for the
cross-section as a function of frequency coincides with the leading-order
dependence of the entropy on the temperature in the corresponding near-extremal
p-branes.Comment: Latex (3 times), 20 page
Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities
Alzheimer\u27s disease (AD) is a neurodegenerative disorder characterized pathologically by progressive neuronal loss, extracellular plaques containing the amyloid-β (Aβ) peptides, and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ is thought to act upstream of tau, affecting its phosphorylation and therefore aggregation state. One of the major risk factors for AD is traumatic brain injury (TBI). Acute intra-axonal Aβ and diffuse extracellular plaques occur in ∼30% of human subjects after severe TBI. Intra-axonal accumulations of tau but not tangle-like pathologies have also been found in these patients. Whether and how these acute accumulations contribute to subsequent AD development is not known, and the interaction between Aβ and tau in the setting of TBI has not been investigated. Here, we report that controlled cortical impact TBI in 3xTg-AD mice resulted in intra-axonal Aβ accumulations and increased phospho-tau immunoreactivity at 24 h and up to 7 d after TBI. Given these findings, we investigated the relationship between Aβ and tau pathologies after trauma in this model by systemic treatment of Compound E to inhibit γ-secretase activity, a proteolytic process required for Aβ production. Compound E treatment successfully blocked posttraumatic Aβ accumulation in these injured mice at both time points. However, tau pathology was not affected. Our data support a causal role for TBI in acceleration of AD-related pathologies and suggest that TBI may independently affect Aβ and tau abnormalities. Future studies will be required to assess the behavioral and long-term neurodegenerative consequences of these pathologies
Importing Corruption Culture from Overseas: Evidence from Corporate Tax Evasion in the United States
This paper studies how cultural norms and enforcement policies influence illicit corporate activities. Using confidential IRS audit data, we show that corporations with owners from countries with higher corruption norms engage in higher amounts of tax evasion in the U.S. This effect is strong for small corporations and decreases as the size of the corporation increases. In the mid-2000s, the United States implemented several enforcement measures which significantly increased tax compliance. However, we find that these enforcement efforts were less effective in reducing tax evasion by corporations whose owners are from countries with higher corruption norms. This suggests that cultural norms can be a challenge to legal enforcement.
Co-doping red-emitting Sr2Si5N8:Eu2+ into yellow-emitting phosphor-packaging for enhancing the optical properties of the 8500 K remote-phosphor packaging wleds
In the last decades, WLEDs attract more and more consideration in both academic and industrial purposes because of its advantages such as fast response time, environment friendliness, small size, long lifetime, and high efficiency. In this research, by doping the red-emitting Sr2Si5N8:Eu2+ phosphor particles into yellow-emitting YAG:Ce phosphor-packaging, a new recommendation for enhancing the optical properties (color uniformity, color rendering index, and lumen output) of the 8500 K remote-phosphor packaging WLEDs is presented, investigated, and demonstrated. By using Mat Lab and Light Tools software based on Mie Theory, the obtained results show that the optical properties of the 8500 K remote-phosphor packaging WLEDs significantly depended on Sr2Si5N8:Eu2+ concentration. The results have provided a potential practical recommendation for manufacturing remote-phosphor W-LEDs.Web of Science1341034102
Novel steady state of a microtubule assembly in a confined geometry
We study the steady state of an assembly of microtubules in a confined
volume, analogous to the situation inside a cell where the cell boundary forms
a natural barrier to growth. We show that the dynamical equations for growing
and shrinking microtubules predict the existence of two steady states, with
either exponentially decaying or exponentially increasing distribution of
microtubule lengths. We identify the regimes in parameter space corresponding
to these steady states. In the latter case, the apparent catastrophe frequency
near the boundary was found to be significantly larger than that in the
interior. Both the exponential distribution of lengths and the increase in the
catastrophe frequency near the cell margin is in excellent agreement with
recent experimental observations.Comment: 8 pages, submitted to Phys. Rev.
- …