126 research outputs found

    A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD

    Get PDF
    AbstractSpinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease triggered by the expansion of CAG repeats in the ATXN3 gene. Here, we report the generation of the first humanized ataxin-3 knock-in mouse model (Ki91), which provides insights into the neuronal and glial pathology of SCA3/MJD. First, mutant ataxin-3 accumulated in cell nuclei across the Ki91 brain, showing diffused immunostaining and forming intranuclear inclusions. The humanized allele revealed expansion and contraction of CAG repeats in intergenerational transmissions. CAG mutation also exhibited age-dependent tissue-specific expansion, which was most prominent in the cerebellum, pons and testes of Ki91 animals. Moreover, Ki91 mice displayed neuroinflammatory processes, showing astrogliosis in the cerebellar white matter and the substantia nigra that paralleled the transcriptional deregulation of Serpina3n, a molecular sign of neurodegeneration and brain damage. Simultaneously, the cerebellar Purkinje cells in Ki91 mice showed neurodegeneration, a pronounced decrease in Calbindin D-28k immunoreactivity and a mild decrease in cell number, thereby modeling the degeneration of the cerebellum observed in SCA3. Moreover, these molecular and cellular neuropathologies were accompanied by late behavioral deficits in motor coordination observed in rotarod and static rod tests in heterozygous Ki91 animals. In summary, we created an ataxin-3 knock-in mouse model that combines the molecular and behavioral disease phenotypes with the genetic features of SCA3. This model will be very useful for studying the pathogenesis and responses to therapy of SCA3/MJD and other polyQ disorders

    FISH Mapping of Two Putative Keratin Gene Clusters on Cat (Felis catus) Chromosomes

    Get PDF
    Genes encoding keratins are evolutionary highly conserved and clustered in two linkage groups in mammalian genomes. Canine keratin 9 (K-9) and keratin 2e (K-2) cosmid-derived gene probes were used to localize the acidic and basic-neutral keratin gene clusters to cat chromosomes E1q12 and B4q15, respectively. The status of the physical map of the cat genome is discusse

    Canine-Derived Cosmid Probes Containing Microsatellites Can Be Used in Physical Mapping of Arctic Fox (Alopex lagopus) and Chinese Raccoon Dog (Nyctereutes procyonoides procyonoides) Genomes

    Get PDF
    Rapid development of the canine marker genome map facilitates genome mapping of other Canidae species. In this study we present chromosomal localization of 18 canine-derived cosmid probes containing microsatellites in the arctic fox (Alopex lagopus) and Chinese raccoon dog (Nyctereutes procyonoides procyonoides) genomes by the use of fluorescence in situ hybridization (FISH). The chromosome localizations in the arctic fox are in general agreement with data obtained from comparative genome maps of the dog and the fox. However, our studies showed that the order of the loci on some chromosomes was changed during karyotype evolution. Therefore, we suggest that small intrachromosomal rearrangements took plac

    Testiculaire aandoening van seksuele differentiatie (78,XX SRY-negatief) bij een vrouwelijke Franse buldog

    Get PDF
    A presumably female intact French bulldog of ten months old was presented to the Faculty of Veterinary Medicine of the Ghent University with an enlarged clitoris and purulent vaginal discharge. It was suggested to remove the enlarged clitoris as to avoid further irritation and to perform a gonadectomy at the same time, since the owners were not planning to breed with the dog. An abnormal reproductive tract was observed during surgery. A normal uterus was present, but both gonads resembled testes. Histologic examination of the resected tissues confirmed the presence of bilateral testes in combination with a normal uterus. Karyotyping and molecular analysis of the SRY-gene resulted in a 78,XX SRY-negative karyotype. The French bulldog was diagnosed with a 78,XX SRY-negative testicular disorder of sex development (DSD)

    Effect of three common SNPs in 5′-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents

    Get PDF
    Genes encoding adipokines are considered as candidates for human obesity. In this study we analyzed the expression of leptin (LEP) and adiponectin (ADIPOQ) genes in relation to common 5′-flanking or 5′UTR variants: -2548G>A (LEP), 19A>G (LEP) and -11377C>G (ADIPOQ) in Polish obese children and adolescents. Relative transcription levels in the subcutaneous adipose tissue (real time RT–PCR) and serum protein concentrations (RIA) were measured in 48 obese subjects with known genotypes at three polymorphic sites and in five non-obese controls. None of the studied polymorphisms altered significantly the expression. Significantly elevated relative transcription levels of the LEP gene (P < 0.05) and serum leptin concentrations (P < 0.01) were recorded in obese patients, when compared with the non-obese controls, but such differences were not found for the ADIPOQ gene. Interestingly, the leptin to adiponectin protein concentration ratio (L/A) was approximately sevenfold higher in obese children and adolescents when compared with the non-obese controls (P < 0.001). Taking into consideration the observed relationship between the genotypes and the gene expression level we suggest that these SNPs are not conclusive markers for predisposition to obesity in Polish children and adolescents. On the other hand, we confirmed that the leptin to adiponectin gene expression ratio (L/A) is an informative index characterizing obesity

    An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ) disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting.</p> <p>Results</p> <p>Using the patient-derived cell culture models of polyQ diseases, we tested various siRNAs, and antisense reagents and assessed their silencing efficiency and allele selectivity. We showed considerable allele discrimination by several SNP targeting siRNAs based on a weak G-G or G-U pairing with normal allele and strong G-C pairing with mutant allele at the site of RISC-induced cleavage. Among the CAG repeat targeting reagents the strongest allele discrimination is achieved by miRNA-like functioning reagents that bind to their targets and inhibit their translation without substantial target cleavage. Also, morpholino analog performs well in mutant and normal allele discrimination but its efficient delivery to cells at low effective concentration still remains a challenge.</p> <p>Conclusions</p> <p>Using three cellular models of polyQ diseases and the same experimental setup we directly compared the performance of different oligonucleotide-based treatment strategies that are currently under development. Based on the results obtained by us and others we discussed the advantages and drawbacks of these strategies considering them from several different perspectives. The strategy aimed at nonallele-selective inhibiting of causative gene expression by targeting specific sequence of the implicated gene is the easiest to implement but relevant benefits are still uncertain. The gene replacement strategy that combines the nonallele-selective gene silencing with the expression of the exogenous normal allele is a logical extension of the former and it deserves to be explored further. Both allele-selective RNAi approaches challenge cellular RNA interference machinery to show its ability to discriminate between similar sequences differing in either single base substitutions or repeated sequence length. Although both approaches perform well in allele discrimination most of our efforts are focused on repeat targeting due to its potentially higher universality.</p

    Microsatellite polymorphism and its association with body weight and selected morphometrics of farm red fox (Vulpes vulpes L.)

    Get PDF
    Polymorphism of 30 canine-derived microsatellites was studied in a group of 200 red foxes kept on 2 Polish farms. 22 out of 30 microsatellites were selected to study association between marker genotypes and body weight (BW), body length (BL), body circumference (BC), tail length (TL), ear height (EH), length of the right front limb (FRLL), length of the right rear limb (RRLL), length of the right front foot (FRFL) and length of the right rear foot (RRFL). A total of 112 alleles and 243 genotypes were found at 22 autosomal microsatellite loci. Three monomorphic loci deemed as uninformative were excluded from the study. The association between marker genotypes and the studied traits was analysed using general linear model (GLM) procedure and least squares means (LSM). Linkage disequilibrium (LD) was estimated to assess non-random association between microsatellite loci. Out of 19 microsatellites studied four markers showed no association with the studied traits, three markers had a significant effect on one trait, and another three markers had significant effect on two traits. Among ten microsatellites with significant effect on four economically important traits (BW, BL, BC, TL) four were associated with two characters: marker FH2613 with BW and BC, marker FH2097withBL and BC, marker ZUBECA6 with BW and BC, whereas marker REN75M10 was associated with BL and TL. The strongest LD (r(2) ranged from 0.15 to 0.33) was estimated between nine loci with significant effect on economically important traits (BW, BL, BC, TL)
    • …
    corecore