2,386 research outputs found
Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4
We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single
crystals in the doping range of 0.5<= x <= 0.8 for temperatures up to 1000 K.
The magnetism below room temperature is described by paramagnetic Co2+ in the
high-spin state and by Co3+ in the non-magnetic low-spin state. Above room
temperature, an increase in susceptibility compared to the behavior expected
from Co2+ is seen, which we attribute to a spin-state transition of Co3+. The
susceptibility is analyzed by comparison to full-multiplet calculations for the
thermal population of the high- and intermediate-spin states of Co3+
Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites
Orthorhombically distorted perovskite manganites, RMnO3 with R being a
trivalent rare-earth ion, exhibit a variety of magnetic and electric phases
including multiferroic (i.e. concurrently magnetic and ferroelectric) phases
and fascinating magnetoelectric phenomena. We theoretically study the phase
diagram of RMnO3 by constructing a microscopic spin model, which includes not
only the superexchange interaction but also the single-ion anisotropy (SIA) and
the Dzyaloshinsky-Moriya interaction (DMI). Analysis of this model using the
Monte-Carlo method reproduces the experimental phase diagrams as functions of
the R-ion radius, which contain two different multiferroic states, i.e. the
ab-plane spin cycloid with ferroelectric polarization P//a and the bc-plane
spin cycloid with P//c. The orthorhombic lattice distortion or the
second-neighbor spin exchanges enhanced by this distortion exquisitely controls
the keen competition between these two phases through tuning the SIA and DMI
energies. This leads to a lattice-distortion-induced reorientation of P from a
to c in agreement with the experiments. We also discuss spin structures in the
A-type antiferromagnetic state, those in the cycloidal spin states, origin and
nature of the sinusoidal collinear spin state, and many other issues.Comment: 23 pages, 19 figures. Recalculated results after correcting errors in
the assignment of Dzyaloshinsky-Moriya vector
Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry
We present a comprehensive ellipsometric study of an untwinned, nearly
stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures
20 K < T < 300 K. The complex dielectric response along the b and c axes of the
Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly
anisotropic over the spectral range covered in the experiment. The difference
between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing
temperature, and the gradual evolution observed in the paramagnetic state is
strongly enhanced by the onset of A-type antiferromagnetic long-range order at
T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap
excitation at 2 eV, there are opposite changes observed at higher energy at 4 -
5 eV, appearing on a broad-band background due to the strongly dipole-allowed O
2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the
observation of a pronounced spectral-weight transfer between low- and
high-energy features upon magnetic ordering, they are assigned to high-spin and
low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy
of the lowest-energy optical band and the spectral weight shifts induced by
antiferromagnetic spin correlations are quantitatively described by an
effective spin-orbital superexchange model. An analysis of the multiplet
structure of the intersite transitions by Mn e_g electrons allowed us to
estimate the effective intra-atomic Coulomb interaction, the Hund exchange
coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3.
This study identifies the lowest-energy optical transition at 2 eV as an
intersite d-d transition, whose energy is substantially reduced compared to
that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure
Semiflexible Filamentous Composites
Inspired by the ubiquity of composite filamentous networks in nature we
investigate models of biopolymer networks that consist of interconnected floppy
and stiff filaments. Numerical simulations carried out in three dimensions
allow us to explore the microscopic partitioning of stresses and strains
between the stiff and floppy fractions c_s and c_f, and reveal a non-trivial
relationship between the mechanical behavior and the relative fraction of stiff
polymer: when there are few stiff polymers, non-percolated stiff ``inclusions``
are protected from large deformations by an encompassing floppy matrix, while
at higher fractions of stiff material the stiff network is independently
percolated and dominates the mechanical response.Comment: Phys. Rev. Lett, to appear (4 pages, 2 figures
Coulombic Energy Transfer and Triple Ionization in Clusters
Using neon and its dimer as a specific example, it is shown that excited
Auger decay channels that are electronically stable in the isolated monomer can
relax in a cluster by electron emission. The decay mechanism, leading to the
formation of a tricationic cluster, is based on an efficient energy-transfer
process from the excited, dicationic monomer to a neighbor. The decay is
ultrafast and expected to be relevant to numerous physical phenomena involving
core holes in clusters and other forms of spatially extended atomic and
molecular matter.Comment: 5 pages, 1 figure, to be published in PR
Theory of optically forbidden d-d transitions in strongly correlated crystals
A general multiband formulation of linear and non-linear optical response
functions for realistic models of correlated crystals is presented. Dipole
forbidden d-d optical transitions originate from the vertex functions, which we
consider assuming locality of irreducible four-leg vertex. The unified
formulation for second- and third-order response functions in terms of the
three-leg vertex is suitable for practical calculations in solids. We
illustrate the general approach by consideration of intraatomic spin-flip
contributions, with the energy of 2J, where J is a Hund exchange, in the
simplest two-orbital model.Comment: 9 pages, 4 figures, to appear in J. Phys. Cond. Matte
- …