480 research outputs found
A spatial likelihood analysis for MAGIC telescope data
Context. The increase in sensitivity of Imaging Atmospheric Cherenkov
Telescopes (IACTs) has lead to numerous detections of extended -ray
sources at TeV energies, sometimes of sizes comparable to the instrument's
field of view (FoV). This creates a demand for advanced and flexible data
analysis methods, able to extract source information by utilising the photon
counts in the entire FoV.
Aims. We present a new software package, "SkyPrism", aimed at performing 2D
(3D if energy is considered) fits of IACT data, possibly containing multiple
and extended sources, based on sky images binned in energy. Though the
development of this package was focused on the analysis of data collected with
the MAGIC telescopes, it can further be adapted to other instruments, such as
the future Cherenkov Telescope Array (CTA).
Methods. We have developed a set of tools that, apart from sky images (count
maps), compute the instrument response functions (IRFs) of MAGIC (effective
exposure throughout the FoV, point spread function (PSF), energy resolution and
background shape), based on the input data, Monte-Carlo simulations and the
pointing track of the telescopes. With this information, the presented package
can perform a simultaneous maximum likelihood fit of source models of arbitrary
morphology to the sky images providing energy spectra, detection significances,
and upper limits.
Results. We demonstrate that the SkyPrism tool accurately reconstructs the
MAGIC PSF, on and off-axis performance as well as the underlying background. We
further show that for a point source analysis with MAGIC's default
observational settings, SkyPrism gives results compatible with those of the
standard tools while being more flexible and widely applicable.Comment: 13 pages, 10 figure
Optical realization of the two-site Bose-Hubbard model in waveguide lattices
A classical realization of the two-site Bose-Hubbard Hamiltonian, based on
light transport in engineered optical waveguide lattices, is theoretically
proposed. The optical lattice enables a direct visualization of the
Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication
Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model
A simple four-mode Bose-Hubbard model with intrinsic time scale separation
can be considered as a paradigm for mesoscopic quantum systems in thermal
contact. In our previous work we showed that in addition to coherent particle
exchange, a novel slow collective excitation can be identified by a series of
Holstein-Primakoff transformations. This resonant energy exchange mode is not
predicted by linear Bogoliubov theory, and its frequency is sensitive to
interactions among Bogoliubov quasi-particles; it may be referred to as a
second Josephson oscillation, in analogy to the second sound mode of liquid
Helium II. In this paper we will explore this system beyond the
Gross-Pitaevskii mean field regime. We directly compare the classical mean
field dynamics to the exact full quantum many-particle dynamics and show good
agreement over a large range of the system parameters. The second Josephson
frequency becomes imaginary for stronger interactions, however, indicating
dynamical instability of the symmetric state. By means of a generalized quantum
phase model for the full four-mode system, we then show that, in this regime,
high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites,
while the actual particles preferentially occupy the opposite pair. We
interpret this as a simple model for thermal pressure
Kicked Bose-Hubbard systems and kicked tops -- destruction and stimulation of tunneling
In a two-mode approximation, Bose-Einstein condensates (BEC) in a double-well
potential can be described by a many particle Hamiltonian of Bose-Hubbard type.
We focus on such a BEC whose interatomic interaction strength is modulated
periodically by -kicks which represents a realization of a kicked top.
In the (classical) mean-field approximation it provides a rich mixed phase
space dynamics with regular and chaotic regions. By increasing the
kick-strength a bifurcation leads to the appearance of self-trapping states
localized on regular islands. This self-trapping is also found for the many
particle system, however in general suppressed by coherent many particle
tunneling oscillations. The tunneling time can be calculated from the
quasi-energy splitting of the corresponding Floquet states. By varying the
kick-strength these quasi-energy levels undergo both avoided and even actual
crossings. Therefore stimulation or complete destruction of tunneling can be
observed for this many particle system
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
We present the first joint analysis of gamma-ray data from the MAGIC
Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for
gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We
combine 158 hours of Segue 1 observations with MAGIC with 6-year observations
of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the
annihilation cross-section for dark matter particle masses between 10 GeV and
100 TeV - the widest mass range ever explored by a single gamma-ray analysis.
These limits improve on previously published Fermi-LAT and MAGIC results by up
to a factor of two at certain masses. Our new inclusive analysis approach is
completely generic and can be used to perform a global, sensitivity-optimized
dark matter search by combining data from present and future gamma-ray and
neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added.
Matches published version JCAP 02 (2016) 03
- …