20 research outputs found

    Ab-initio calculation of optical absorption in semiconductors: A density-matrix description

    Full text link
    We show how to describe Coulomb renormalization effects and dielectric screening in semiconductors and semiconductor nanostructures within a first-principles density-matrix description. Those dynamic variables and approximation schemes which are required for a proper description of dielectric screening are identified. It is shown that within the random-phase approximation the direct Coulomb interactions become screened, with static screening being a good approximation, whereas the electron-hole exchange interactions remain unscreened. Differences and similarities of our results with those obtained from a corresponding GW approximation and Bethe-Salpeter equation Green's function analysis are discussed.Comment: 10 pages, to be published in Physical Review

    The Coupled Electron-Ion Monte Carlo Method

    Full text link
    In these Lecture Notes we review the principles of the Coupled Electron-Ion Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of Solid State Physics, 34th course: "Computer Simulation in Condensed Matter: from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To appear in Lecture Notes in Physics (2006

    Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians

    Full text link
    Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co, Ni, and Cu are presented, by using a quantum-chemical approach. We believe that these are the first HFA results to have been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally localized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized multi-band Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-interactions. Although the d-bands sit considerably lower within HFA than within the local (spin) density approximation L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to include more sophisticated ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table

    Effect of Fock exchange on the electronic structure and magnetic coupling in NiO

    Get PDF
    The effect of Fock exchange on the periodic description of the geometrical structure, elastic constants, and electronic and magnetic properties of NiO is analyzed. Hybrid density functionals which combine a portion of "exact" Fock exchange with conventional local density approximation (LDA) or generalized gradient approximation (GGA) functionals remedy a number of serious inconsistencies with the traditional LDA or GGA descriptions of this prototypical "Mott" insulator. For example, the hybrid B3LYP functional (which mixes ∼20% Fock exchange with GGA functionals) introduces a significant insulating gap and yields antiferromagnetic Heisenberg coupling constants between Ni sites (J 2 ) in semiquantitative agreement with experiment. Closer inspection shows that while the B3LYP orbital band gap is in excellent agreement with experiment, the magnitude of the antiferromagnetic coupling is overestimated by slightly more than 50%. This has led us to examine a simplified model which combines Fock exchange with the LDA exchange and correlation functionals. This combination allows us to study the magnitude and nature of the band gap, the magnitude of the unpaired spin densities in the different magnetic phases, and the two most important magnetic coupling constants as a function of the fraction of Fock exchange included. It is concluded that ∼35% Fock exchange gives a reasonably balanced description of all properties, including structural parameters, magnetic form factors, the antiferromagnetic Ni-Ni exchange constant, and the character and magnitude of the band gap
    corecore