52 research outputs found

    A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells

    Get PDF
    Purpose Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance. Methods Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay. Results CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide. Conclusion Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents

    UVA/UVA1 phototherapy and PUVA photochemotherapy in connective tissue diseases and related disorders: a research based review

    Get PDF
    BACKGROUND: Broad-band UVA, long-wave UVA1 and PUVA treatment have been described as an alternative/adjunct therapeutic option in a number of inflammatory and malignant skin diseases. Nevertheless, controlled studies investigating the efficacy of UVA irradiation in connective tissue diseases and related disorders are rare. METHODS: Searching the PubMed database the current article systematically reviews established and innovative therapeutic approaches of broad-band UVA irradiation, UVA1 phototherapy and PUVA photochemotherapy in a variety of different connective tissue disorders. RESULTS: Potential pathways include immunomodulation of inflammation, induction of collagenases and initiation of apoptosis. Even though holding the risk of carcinogenesis, photoaging or UV-induced exacerbation, UVA phototherapy seems to exhibit a tolerable risk/benefit ratio at least in systemic sclerosis, localized scleroderma, extragenital lichen sclerosus et atrophicus, sclerodermoid graft-versus-host disease, lupus erythematosus and a number of sclerotic rarities. CONCLUSIONS: Based on the data retrieved from the literature, therapeutic UVA exposure seems to be effective in connective tissue diseases and related disorders. However, more controlled investigations are needed in order to establish a clear-cut catalogue of indications
    • …
    corecore