304 research outputs found

    Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently iscovered pollination mutualism

    Get PDF
    A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels

    Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran, Iran

    Get PDF
    Tehran, the capital city of Iran with a population of over 12 million, is one of the largest urban centres within the seismically active Alpine–Himalayan orogenic belt. Although several historic earthquakes have affected Tehran, their relation to individual faults is ambiguous for most. This ambiguity is partly due to a lack of knowledge about the locations, geometries and seismic potential of structures that have been obscured by dramatic urban growth over the past three decades, and which have covered most of the young geomorphic markers and natural exposures. Here we use aerial photographs from 1956, combined with an ~1 m DEM derived from stereo Pleiades satellite imagery to investigate the geomorphology of a growing anticline above a thrust fault—the Pardisan thrust—within central Tehran. The topography across the ridge is consistent with a steep ramp extending from close to the surface to a depth of ~2 km, where it presumably connects with a shallow-dipping detachment. No primary fault is visible at the surface, and it is possible that the faulting dissipates in the near surface as distributed shearing. We use optically stimulated luminescence to date remnants of uplifted and warped alluvial deposits that are offset vertically across the Pardisan fault, providing minimum uplift and slip-rates of at least 1 mm yr1^{−1}. Our study shows that the faults within the Tehran urban region have relatively rapid rates of slip, are important in the regional tectonics, and have a great impact on earthquake hazard assessment of the city and surrounding region.Geological Survey of Iran, Christ Church College Oxford, Natural Environment Research Council, Economic and Social Research Counci

    Isolation and antiviral activity of the gymnemic acids

    Full text link
    Aus den Blättern von Gymnema sylvestre wurden 4 Gymneasäuren (A, B, C und D) isoliert. Die Antivirusaktivität der Säuren A und B wurde geprüft.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42450/1/18_2005_Article_BF02152834.pd

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning
    corecore