997 research outputs found

    Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences

    Full text link
    Stimulated by the methods applied for the observational determination of masses in the central regions of the AGNs, we examine the conditions under which, in the interior of a gravitating perfect fluid source, the geodesic motions and the general relativistic hydrodynamic flows are dynamically equivalent to each other. Dynamical equivalence rests on the functional similarity between the corresponding (covariantly expressed) differential equations of motion and is obtained by conformal transformations. In this case, the spaces of the solutions of these two kinds of motion are isomorphic. In other words, given a solution to the problem "hydrodynamic flow in a perfect fluid", one can always construct a solution formally equivalent to the problem "geodesic motion of a fluid element" and vice versa. Accordingly, we show that, the observationally determined nuclear mass of the AGNs is being overestimated with respect to the real, physical one. We evaluate the corresponding mass-excess and show that it is not always negligible with respect to the mass ofthe central dark object, while, under circumstances, can be even larger than the rest-mass of the circumnuclear gas involved.Comment: LaTeX file, 22 page

    Novel Techniques for Constraining Neutron-Capture Rates Relevant for r-Process Heavy-Element Nucleosynthesis

    Full text link
    The rapid-neutron capture process (rr process) is identified as the producer of about 50\% of elements heavier than iron. This process requires an astrophysical environment with an extremely high neutron flux over a short amount of time (∼\sim seconds), creating very neutron-rich nuclei that are subsequently transformed to stable nuclei via β−\beta^- decay. One key ingredient to large-scale rr-process reaction networks is radiative neutron-capture (n,γn,\gamma) rates, for which there exist virtually no data for extremely neutron-rich nuclei involved in the rr process. Due to the current status of nuclear-reaction theory and our poor understanding of basic nuclear properties such as level densities and average γ\gamma-decay strengths, theoretically estimated (n,γn,\gamma) rates may vary by orders of magnitude and represent a major source of uncertainty in any nuclear-reaction network calculation of rr-process abundances. In this review, we discuss new approaches to provide information on neutron-capture cross sections and reaction rates relevant to the rr process. In particular, we focus on indirect, experimental techniques to measure radiative neutron-capture rates. While direct measurements are not available at present, but could possibly be realized in the future, the indirect approaches present a first step towards constraining neutron-capture rates of importance to the rr process.Comment: 62 pages, 24 figures, accepted for publication in Progress in Particle and Nuclear Physic

    Performance of three-photon PET imaging: Monte Carlo simulations

    Full text link
    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

    Cultural Differences in Perception of Heroes: Greece, India, and the USA

    Get PDF
    Abstract: Hypothesis: The cultural background of an individual will have a significant effect on their perception of heroes. The purpose of this study was to investigate how one’s cultural background may affect one’s perception of heroes. The results of Study 1 revealed significant cultural differences in ratings of heroic traits. Study 2 employed a trait-sorting and hero-sorting task to explore underlying categories of traits and heroes across cultures. The results again revealed substantial cultural differences, suggesting that heroes, heroic traits, and heroism in general are all constructions of one’s culture and nationality

    Spin-up of the hyperon-softened accreting neutron stars

    Full text link
    We study the spin-up of the accreting neutron stars with a realistic hyperon-softened equation of state. Using precise 2-D calculations we study the evolutionary tracks of accreting neutron stars in the angular-momentum - frequency plane. In contrast to the case of spinning-down solitary radio-pulsars, where a strong back-bending behavior has been observed, we do not see back-bending phenomenon in the accretion-powered spinning-up case. We conclude that in the case of accretion-driven spin-up the back-bending is strongly suppressed by the mass-increase effect accompanying the angular-momentum increase.Comment: 5 pages, 5 figures, accepted by Astronomy & Astrophysic

    Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    Get PDF
    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions

    β-decay Strength Function of 53Ni and 52Co

    Get PDF
    The p process is believed to be responsible for the formation of heavy proton-rich nuclei in the universe. This work deals with the decay of two nuclei that are part of the p process, 53Ni and 52Co. β+ decays for each isotope were recorded with the Summing NaI(Tl) detector at the National Superconducting Cyclotron Laboratory. A preliminary β-decay Intensity Function was derived with Total Absorption Spectroscopy. Total energy spectra, β-particle spectra, individual γ-energy spectra, and multiplicity spectra for the decay to levels in the child nucleus were modeled with GEANT4 based on information from the National Nuclear Data Center. The experimentally measured spectra, when fit with the simulated spectra, give the probability that a particular child level is populated during decay. Refined results, when compared to theory, will provide insight into the formation of p-nuclei elements

    Three-body correlations in the ground-state decay of 26O

    Full text link
    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target
    • …
    corecore