51 research outputs found

    Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution

    Get PDF
    This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO). The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW), a time-varying inertia weight (TVIW), and global-local best inertia weight (GLbestIW), are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    New And Improved Versions Of Genetic And PSO Algorithms For A Class Of Hybrid Systems And Steel Annealing Process

    No full text
    This thesis investigates the optimal control of a class of single stage and two-stage hybrid manufacturing systems with a real time application of Steel Annealing Processes(SAP) via various versions of real coded genetic and particle swarm optimization (PSO) algorithms

    ON THE ANALYSIS OF THE PERFORMANCES OF PARTICLE SWARM OPTIMIZATION ALGORITHM WITH GLOBALLY AND LOCALLY TUNED INERTIA WEIGHT VARIANTS

    No full text
    The investigation of the performance of Particle Swarm Optimization (PSO) algorithm with the new variants to inertia weight in computing the optimal control of a single stage hybrid system is presented in this paper. Three new variants for inertia weight are defined and their applicability with the PSO algorithm is thoroughly explained. The results obtained through the new proposed methods are compared with the existing PSO algorithm, which has a time varying inertia weight from a higher value to a lower value. The proposed methods provide both faster convergence and optimal solution with better accuracy

    On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems

    No full text
    This paper deals with the concept of including the popular genetic algorithm operator, cross-over and root mean square (RMS) variants into particle swarm optimization (PSO) algorithm to make the convergence faster. Two different PSO algorithms are considered in this paper: the first one is the conventional PSO (cPSO) and the second is the global-local best values based PSO (GLbest-PSO). The GLbest-PSO includes global-local best inertia weight (GLbestIW) with global-local best acceleration coefficient (GLbestAC), whereas the cPSO has a time varying inertia weight (TVIW) and either time varying acceleration coefficient (TVAC) or fixed AC (FAC). The effectiveness of the cross-over operator with both PSO algorithms is tested through a constrained optimal control problem of a class of hybrid systems. The experimental results illustrate the advantage of PSO with cross-over operator, which sharpens the convergence and tunes to the best solution. In order to compare and verify the validity and effectiveness of the new approaches for PSO, several statistical analyses are carried out. The results clearly demonstrate that the GLbest-PSO with the cross-over operator is a very promising optimization technique. Similar conclusions can be made for the GLbest-PSO with RMS variants also. (C) 2007 Elsevier B. V. All rights reserved

    On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems

    No full text
    This paper presents an alternative and efficient method for solving the optimal control of single-stage hybrid manufacturing systems which are composed with two different categories: continuous dynamics and discrete dynamics. Three different inertia weights, a constant inertia weight ( CIW), time-varying inertia weight ( TVIW), and global-local best inertia weight ( GLbestIW), are considered with the particle swarm optimization ( PSO) algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated individually with the three inertia weights separately to compute the optimal control of the single-stage hybrid manufacturing system, and it is observed that the PSO with the proposed inertia weight yields better result in terms of both optimal solution and faster convergence. Added to this, the optimal control problem is also solved through real coded genetic algorithm ( RCGA) and the results are compared with the PSO algorithms. A typical numerical example is also included in this paper to illustrate the efficacy and betterment of the proposed algorithm. Several statistical analyses are carried out from which can be concluded that the proposed method is superior to all the other methods considered in this paper

    On the optimal control of single-stage hybrid manufacturing systems via novel and different variants of particle swarm optimization algorithm

    Get PDF
    This paper presents several novel approaches of particle swarm optimization ( PSO) algorithm with new particle velocity equations and three variants of inertia weight to solve the optimal control problem of a class of hybrid systems, which are motivated by the structure of manufacturing environments that integrate process and optimal control. In the proposed PSO algorithm, the particle velocities are conceptualized with the local best (or pbest) and global best(or gbest) of the swarm, which makes a quick decision to direct the search towards the optimal( fitness) solution. The inertia weight of the proposed methods is also described as a function of pbest and gbest, which allows the PSO to converge faster with accuracy. A typical numerical example of the optimal control problem is included to analyse the efficacy and validity of the proposed algorithms. Several statistical analyses including hypothesis test are done to compare the validity of the proposed algorithms with the existing PSO technique, which adopts linearly decreasing inertia weight. The results clearly demonstrate that the proposed PSO approaches not only improve the quality but also are more efficient in converging to the optimal value faster
    • …
    corecore