131 research outputs found
Preparation of ZnO nanowires by electrochemical deposition
AbstractThis work reports the results from the synthesis of nanostructured ZnO thin films via electrochemical deposition on glass substrates coated with F doped SnO2. The influence of the deposition parameters on the properties of the obtained ZnO films was studied. The Raman spectra of the ZnO films contain the typical for ZnO vibrational bands. The scanning electron microscope micrographs demonstrate that the films consist of ZnO nanowires. Growing of ZnO in the conditions with addition of H2O2 in lower concentration and without flowing air results in larger grain formation. The ZnO layers demonstrate high diffuse reflection
Reconstructing the intrinsic statistical properties of intermittent locomotion through corrections for boundary effects
Locomotion characteristics are often recorded within bounded spaces, a constraint which introduces geometry-specific biases and potentially complicates the inference of behavioural features from empirical observations. We describe how statistical properties of an uncorrelated random walk, namely the steady-state stopping location probability density and the empirical step probability density, are affected by enclosure in a bounded space. The random walk here is considered as a null model for an organism moving intermittently in such a space, that is, the points represent stopping locations and the step is the displacement between them. Closed-form expressions are derived for motion in one dimension and simple two-dimensional geometries, in addition to an implicit expression for arbitrary (convex) geometries. For the particular choice of no-go boundary conditions, we demonstrate that the empirical step distribution is related to the intrinsic step distribution, i.e. the one we would observe in unbounded space, via a multiplicative transformation dependent solely on the boundary geometry. This conclusion allows in practice for the compensation of boundary effects and the reconstruction of the intrinsic step distribution from empirical observations
Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies
BACKGROUND: An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. METHODOLOGY/FINDINGS: Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. CONCLUSIONS/SIGNIFICANCE: Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales
SiC Nanorods Grown on Electrospun Nanofibers Using Tb as Catalyst: Fabrication, Characterization, and Photoluminescence Properties
Well-crystallizedβ-SiC nanorods grown on electrospun nanofibers were synthesized by carbothermal reduction of Tb doped SiO2(SiO2:Tb) nanofibers at 1,250 °C. The as-synthesized SiC nanorods were 100–300 nm in diameter and 2–3 μm in length. Scanning electron microscopy (SEM) results suggested that the growth of the SiC nanorods should be governed by vapor-liquid-solid (VLS) mechanism with Tb metal as catalyst. Tb(NO3)3particles on the surface of the electrospun nanofibers were decomposed at 500 °C and later reduced to the formation of Tb nanoclusters at 1,200 °C, and finally the formation of a Si–C–Tb ally droplet will stimulate the VLS growth at 1,250 °C. Microstructure of the nanorod was further investigated by transmission electron microscopy (TEM). It was found that SiC <111> is the preferred initial growth direction. The liquid droplet was identified to be Si86Tb14, which acted as effective catalyst. Strong green emissions were observed from the SiC nanorod samples. Four characteristic photoluminescence (PL) peaks of Tb ions were also identified
Trail laying during tandem-running recruitment in the ant Temnothorax albipennis
Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates. © 2014 Springer-Verlag Berlin Heidelberg
Migration control: A distance compensation strategy in ants
©The Author(s) 2016. This article is published with open access at Springerlink.com. Migratory behaviour forms an intrinsic part of the life histories of many organisms but is often a high-risk process. Consequently, varied strategies have evolved to negate such risks, but empirical data relating to their functioning are limited. In this study, we use the model system of the househunting ant Temnothorax albipennis to demonstrate a key strategy that can shorten migration exposure times in a group of social insects. Colonies of these ants frequently migrate to new nest sites, and due to the nature of their habitat, the distances over which they do so are variable, leading to fluctuating potential costs dependent on migration parameters. We show that colonies of this species facultatively alter the dynamics of a migration and so compensate for the distance over which a given migration occurs. Specifically, they achieve this by modulating the rate of ‘tandem running’, in which workers teach each other the route to a new nest site. Using this method, colonies are able to engage a larger number of individuals in the migration process when the distance to be traversed is greater, and furthermore, the system appears to be based on perceived encounter rate at the individual level. This form of decentralised control highlights the adaptive nature of a behaviour of ecological importance, and indicates that the key to its robustness lies in the use of simple rules. Additionally, our results suggest that such coordinated group reactions are central to achieving the high levels of ecological success seen in many eusocial organisms
Thermal fracture as a framework for quasi-static crack propagation
We address analytically and numerically the problem of crack path prediction
in the model system of a crack propagating under thermal loading. We show that
one can explain the instability from a straight to a wavy crack propagation by
using only the principle of local symmetry and the Griffith criterion. We then
argue that the calculations of the stress intensity factors can be combined
with the standard crack propagation criteria to obtain the evolution equation
for the crack tip within any loading configuration. The theoretical results of
the thermal crack problem agree with the numerical simulations we performed
using a phase field model. Moreover, it turns out that the phase-field model
allows to clarify the nature of the transition between straight and oscillatory
cracks which is shown to be supercritical.Comment: 19 pages, 8 figure
Evolution of self-organized division of labor in a response threshold model
Division of labor in social insects is determinant to their ecological success. Recent models emphasize that division of labor is an emergent property of the interactions among nestmates obeying to simple behavioral rules. However, the role of evolution in shaping these rules has been largely neglected. Here, we investigate a model that integrates the perspectives of self-organization and evolution. Our point of departure is the response threshold model, where we allow thresholds to evolve. We ask whether the thresholds will evolve to a state where division of labor emerges in a form that fits the needs of the colony. We find that division of labor can indeed evolve through the evolutionary branching of thresholds, leading to workers that differ in their tendency to take on a given task. However, the conditions under which division of labor evolves depend on the strength of selection on the two fitness components considered: amount of work performed and on worker distribution over tasks. When selection is strongest on the amount of work performed, division of labor evolves if switching tasks is costly. When selection is strongest on worker distribution, division of labor is less likely to evolve. Furthermore, we show that a biased distribution (like 3:1) of workers over tasks is not easily achievable by a threshold mechanism, even under strong selection. Contrary to expectation, multiple matings of colony foundresses impede the evolution of specialization. Overall, our model sheds light on the importance of considering the interaction between specific mechanisms and ecological requirements to better understand the evolutionary scenarios that lead to division of labor in complex systems
Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of Labour
Division of labour (DoL) is a fundamental organisational principle in human
societies, within virtual and robotic swarms and at all levels of biological
organisation. DoL reaches a pinnacle in the insect societies where the most
widely used model is based on variation in response thresholds among
individuals, and the assumption that individuals and stimuli are well-mixed.
Here, we present a spatially explicit model of DoL. Our model is inspired by
Pierre de Gennes' 'Ant in a Labyrinth' which laid the foundations
of an entire new field in statistical mechanics. We demonstrate the emergence,
even in a simplified one-dimensional model, of a spatial patterning of
individuals and a right-skewed activity distribution, both of which are
characteristics of division of labour in animal societies. We then show using a
two-dimensional model that the work done by an individual within an activity
bout is a sigmoidal function of its response threshold. Furthermore, there is an
inverse relationship between the overall stimulus level and the skewness of the
activity distribution. Therefore, the difference in the amount of work done by
two individuals with different thresholds increases as the overall stimulus
level decreases. Indeed, spatial fluctuations of task stimuli are minimised at
these low stimulus levels. Hence, the more unequally labour is divided amongst
individuals, the greater the ability of the colony to maintain homeostasis.
Finally, we show that the non-random spatial distribution of individuals within
biological and social systems could be caused by indirect (stigmergic)
interactions, rather than direct agent-to-agent interactions. Our model links
the principle of DoL with principles in the statistical mechanics and provides
testable hypotheses for future experiments
- …