1,511 research outputs found
Harmonics of the AC susceptibility as probes to differentiate the various creep models
We measured the temperature dependence of the 1st and the 3rd harmonics of
the AC magnetic susceptibility on some type II superconducting samples at
different AC field amplitudes, hAC. In order to interpret the measurements, we
computed the harmonics of the AC susceptibility as function of the temperature
T, by integrating the non-linear diffusion equation for the magnetic field with
different creep models, namely the vortex glass-collective creep
(single-vortex, small bundle and large bundle) and Kim-Anderson model. We also
computed them by using a non-linear phenomenological I-V characteristics,
including a power law dependence of the pinning potential on hAC. Our
experimental results were compared with the numerically computed ones, by the
analysis of the Cole-Cole plots. This method results more sensitive than the
separate component analysis, giving the possibility to obtain detailed
information about the contribution of the flux dynamic regimes in the magnetic
response of the analysed samples.Comment: 9 pages, 6 figures, submitted to Physica
Magnetic relaxation of type II superconductors in a mixed state of entrapped and shielded flux
The magnetic relaxation has been investigated in type II superconductors when
the initial magnetic state is realized with entrapped and shielded flux (ESF)
contemporarily. This flux state is produced by an inversion in the magnetic
field ramp rate due to for example a magnetic field overshoot. The
investigation has been faced both numerically and by measuring the magnetic
relaxation in BSCCO tapes. Numerical computations have been performed in the
case of an infinite thick strip and of an infinite slab, showing a quickly
relaxing magnetization in the first seconds. As verified experimentally, the
effects of the overshoot cannot be neglected simply by cutting the first 10-100
seconds in the magnetic relaxation. On the other hand, at very long times, the
magnetic states relax toward those corresponding to field profiles with only
shielded flux or only entrapped flux, depending on the amplitude of the field
change with respect to the full penetration field of the considered
superconducting samples. In addition, we have performed numerical simulations
in order to reproduce the relaxation curves measured on the BSCCO(2223) tapes;
this allowed us to interpret correctly also the first seconds of the
curves.Comment: 9 pages, 12 figures submit to PR
Spin-Polarization transition in the two dimensional electron gas
We present a numerical study of magnetic phases of the 2D electron gas near
freezing. The calculations are performed by diffusion Monte Carlo in the fixed
node approximation. At variance with the 3D case we find no evidence for the
stability of a partially polarized phase. With plane wave nodes in the trial
function, the polarization transition takes place at Rs=20, whereas the best
available estimates locate Wigner crystallization around Rs=35. Using an
improved nodal structure, featuring optimized backflow correlations, we confirm
the existence of a stability range for the polarized phase, although somewhat
shrunk, at densities achievable nowadays in 2 dimensional hole gases in
semiconductor heterostructures . The spin susceptibility of the unpolarized
phase at the magnetic transition is approximately 30 times the Pauli
susceptibility.Comment: 7 pages, 4 figure
Exchange and correlation effects on the plasmon dispersions and the Coulomb drag in low-density electron bilayers
We investigate the effect of exchange and correlation (xc) on the plasmon
spectrum and the Coulomb drag between spatially separated low-density
two-dimensional electron layers. We adopt a new approach, which employs dynamic
xc kernels in the calculation of the bi-layer plasmon spectra and of the
plasmon-mediated drag, and static many-body local field factors in the
calculation of the particle-hole contribution to the drag. The spectrum of
bi-layer plasmons and the drag resistivity are calculated in a broad range of
temperatures taking into account both intra- and inter-layer correlation
effects. We observe that both plasmon modes are strongly affected by xc
corrections. After the inclusion of the complex dynamic xc kernels, a decrease
of the electron density induces shifts of the plasmon branches in opposite
directions. And this is in stark contrast to the tendency obtained within the
RPA that both optical and acoustical plasmons move away from the boundary of
the particle-hole continuum with a decrease in the electron density. We find
that the introduction of xc corrections results in a significant enhancement of
the transresistivity and qualitative changes in its temperature dependence. In
particular, the large high-temperature plasmon peak that is present in the
random phase approximation is found to disappear when the xc corrections are
included. Our numerical results at low temperatures are in good agreement with
the results of recent experiments by M. Kellogg {\it et al.}, Solid State
Commun. \textbf{123}, 515 (2002).Comment: 28 pages, 15 figure
Assessing composition gradients in multifilamentary superconductors by means of magnetometry methods
We present two magnetometry-based methods suitable for assessing gradients in
the critical temperature and hence the composition of multifilamentary
superconductors: AC magnetometry and Scanning Hall Probe Microscopy. The
novelty of the former technique lies in the iterative evaluation procedure we
developed, whereas the strength of the latter is the direct visualization of
the temperature dependent penetration of a magnetic field into the
superconductor. Using the example of a PIT Nb3Sn wire, we demonstrate the
application of these techniques, and compare the respective results to each
other and to EDX measurements of the Sn distribution within the sub-elements of
the wire.Comment: 7 pages, 8 figures; broken hyperlinks are due to a problem with arXi
- …