12 research outputs found

    Properties of Electrolytes for Li -ion Batteries with Higher Fire Safety

    No full text
    Abstract. In modern Li -ion batteries are used, as part of the electrolyte organic solvents, which are flammable. In this work we are investigate the influence of different solvents and their mixtures on the flashpoint due find a solvent with increase the safety of such battery. We are taking the flashpoint as main safety parameter. Other properties that we observed are the specific conductivity and permittivity with both are important for solvent classification as appropriate for electrolytes usability. Another property for useable electrolytes is the melting point temperature and the temperature work window for lithium -ion batteries. In this paper it will be presented some properties of these mixtures from new solvents with commonly used solvents for aprotic electrolytes

    Performance of LiFePO4/C and carbon fibers composite as cathodes in lithium-ion batteries and battery modeling

    Get PDF
    Currently, the cathode material LiFePO4/C is the most promising active material for high-power lithium-ion batteries for electric vehicle applications and it has been observed that its response is also dependent on the nature of the carbon used as support. This paper presents the preliminary results from the synthesis of LiFePO4 supported on carbon fibers where phosphate and fibers are synthesized together at a single stage. The electrodes built with this material have a good electrochemical response with the typical behavior of LiFePO4. In addition, the behavior of these materials has been characterized from the viewpoint of the electrochemistry of charge/discharge processes in order to provide knowledge for the global modeling of batteries. A Battery Management System (BMS) is also currently being developed in order to control the operating conditions and the state of charge of Li-ion batteries. The development of a BMS requires an adequate modeling of the dynamic accumulation processes taking place in the battery. A general model has been derived and validated in terms of the experimental performance of a Li-ion battery, some results are presented below.Fil: Thomas, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Castro, Elida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sedlarikova, M.. Brno University of Technology; República ChecaFil: Visintin, Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Characterization of anodes for lithium-ion batteries

    Get PDF
    The lithium-ion batteries are energy storage systems of high performance and low cost. They are employed in multiple portable devices, and these require the use of increasingly smaller and lighter batteries with high energy and power density, fast charging, and long service life. Moreover,these systems are promising for use in electric or hybrid vehicles.However, the lithium-ion battery still requires the improvement of the electrode material properties, such as cost, energy density, cycle life, safety, and environmental compatibility. These batteries use carbon as anode material, usually synthetic graphite, because of its high coulombic efficiency and acceptable specific capacity for the formation of intercalation compounds (LiC6). In this paper, the methodology usedto prepare and characterize the reversible and irreversible capacityand cyclic stability of graphite materials as anodes in lithium-ion batteries of commercial carbon and shungite carbon is presented. The results obtained using electrochemical techniques are discussed. These electrodes exhibited good activation process and high-rate dischargeability performance. For carbon and shungite electrodes, the maximum discharge capacity values were 259 and 170 mA h g−1, respectively.Fil: Humana, Rita Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro de Investigaciones y Transferencia de Catamarca; ArgentinaFil: Ortiz, Mariela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Universidad Tecnologica Nacional. Facultad Regional La Plata; ArgentinaFil: Thomas, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Real, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Universidad Tecnologica Nacional. Facultad Regional La Plata; ArgentinaFil: Sedlarikova, M.. Brno University of Technology; República ChecaFil: Vondrak, J.. Brno University of Technology; República ChecaFil: Visintin, Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentin
    corecore