97 research outputs found

    STUDY OF HOMOGENEITY, POROSITY AND INTERNAL DEFECTS IN AERATED AND EPS AGGREGATE POLY BRICKS USING NEUTRON RADIOGRAPHY TECHNIQUE

    Get PDF
    A powerful non-destructive testing (NDT) technique is adopted to study the internal defects and elemental distribution/homogeneity and porosity of aerated brick and EPS aggregate poly brick samples. In the present study the internal defects like homogeneity, porosity, elemental distribution, EPS aggregate and aerator distributor in the test samples have been observed by the measurement of gray value/optical density of the neutron radiographic images of these samples. From this measurement it is found that the neutron intensity/optical density variation with the pixel distance of the AOI of the NR images in both expanded polystyrene (EPS) aggregate poly brick and aerated brick samples comply almost same in nature with respect to the whole AOI but individually each AOI shows different nature from one AOI to another and it confirms that the elemental distribution within a AOI is almost homogeneous. Finally it was concluded that homogeneity, elemental distribution in the EPS aggregate poly brick sample is better than that of the aerated brick sample

    Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium, Rickettsia typhi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of rickettsiae to survive in multiple eukaryotic host environments provides a good model for studying pathogen-host molecular interactions. <it>Rickettsia typhi</it>, the etiologic agent of murine typhus, is a strictly intracellular gram negative Ξ±-proteobacterium, which is transmitted to humans by its arthropod vector, the oriental rat flea, <it>Xenopsylla cheopis</it>. Thus, <it>R. typhi </it>must cycle between mammalian and flea hosts, two drastically different environments. We hypothesize that temperature plays a role in regulating host-specific gene expression, allowing <it>R. typhi </it>to survive in mammalian and arthropod hosts. In this study, we used Affymetrix microarrays to screen for temperature-induced genes upon a temperature shift from 37Β°C to 25Β°C, mimicking the two different host temperatures <it>in vitro</it>.</p> <p>Results</p> <p>Temperature-responsive genes belonged to multiple functional categories including among others, transcription, translation, posttranslational modification/protein turnover/chaperones and intracellular trafficking and secretion. A large number of differentially expressed genes are still poorly characterized, and either have no known function or are not in the COG database. The microarray results were validated with quantitative real time RT-PCR.</p> <p>Conclusion</p> <p>This microarray screen identified various genes that were differentially expressed upon a shift in temperature from 37Β°C to 25Β°C. Further characterization of the identified genes may provide new insights into the ability of <it>R. typhi </it>to successfully transition between its mammalian and arthropod hosts.</p

    Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells

    Get PDF
    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycocon- jugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycero- phospholipid pathways also initiate from host precursors, and import of both iso- prenes and terpenoids is required for the synthesis of ubiquinone and the lipid car- rier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accen- tuating their parasitic nature. Six biosynthesis pathways contain holes (missing en- zymes); similar patterns in taxonomically diverse bacteria suggest alternative en- zymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host met- abolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell

    Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems

    Get PDF
    Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. IMPORTANCE:&nbsp; Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.</p

    Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems

    Get PDF
    Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatio-temporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. IMPORTANCE Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.Peer reviewe

    Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

    Get PDF
    BACKGROUND: The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFΞ΄, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE: Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree

    An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved

    Get PDF
    Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known.Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells.We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model

    Tobacco smoking clusters in households affected by tuberculosis in an individual participant data meta-analysis of national tuberculosis prevalence surveys: Time for household-wide interventions?

    Get PDF
    Tuberculosis (TB) and non-communicable diseases (NCD) share predisposing risk factors. TB-associated NCD might cluster within households affected with TB requiring shared prevention and care strategies. We conducted an individual participant data meta-analysis of national TB prevalence surveys to determine whether NCD cluster in members of households with TB. We identified eligible surveys that reported at least one NCD or NCD risk factor through the archive maintained by the World Health Organization and searching in Medline and Embase from 1 January 2000 to 10 August 2021, which was updated on 23 March 2023. We compared the prevalence of NCD and their risk factors between people who do not have TB living in households with at least one person with TB (members of households with TB), and members of households without TB. We included 16 surveys (n = 740,815) from Asia and Africa. In a multivariable model adjusted for age and gender, the odds of smoking was higher among members of households with TB (adjusted odds ratio (aOR) 1.23; 95% CI: 1.11–1.38), compared with members of households without TB. The analysis did not find a significant difference in the prevalence of alcohol drinking, diabetes, hypertension, or BMI between members of households with and without TB. Studies evaluating household-wide interventions for smoking to reduce its dual impact on TB and NCD may be warranted. Systematically screening for NCD using objective diagnostic methods is needed to understand the actual burden of NCD and inform comprehensive interventions

    Characterization of Sec-Translocon-Dependent Extracytoplasmic Proteins of Rickettsia typhiβ–Ώ †

    No full text
    As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells
    • …
    corecore