529 research outputs found
Operation of Faddeev-Kernel in Configuration Space
We present a practical method to solve Faddeev three-body equations at
energies above three-body breakup threshold as integral equations in coordinate
space. This is an extension of previously used method for bound states and
scattering states below three-body breakup threshold energy. We show that
breakup components in three-body reactions produce long-range effects on
Faddeev integral kernels in coordinate space, and propose numerical procedures
to treat these effects. Using these techniques, we solve Faddeev equations for
neutron-deuteron scattering to compare with benchmark solutions.Comment: 20 pages, 8 figures, to be published in Few-Body System
Central and tensor components of three-nucleon forces in low-energy proton-deuteron scattering
Contributions of three-nucleon forces (3NF) to proton-deuteron scattering
observables at energies below the deuteron breakup threshold are studied by
solving the Faddeev equation that includes the Coulomb interaction. At E_p=3.0
MeV, we find that the central part of a two-pion exchange 3NF removes the
discrepancy between measured cross sections and the calculated ones by
two-nucleon forces, and improves the agreement with T_{22} experimental data.
However, the tensor part of the 3NF fails in reproducing data of the analyzing
power T_{21} by giving worse agreement between the measured and the calculated.
Detailed examinations of scattering amplitudes suggest that a P-wave
contribution in spin quartet tensor amplitudes has unsuitable sign for
reproducing the T_{21} data.Comment: 6 pages, 6 figure
Triton calculations with and exchange three-nucleon forces
The Faddeev equations are solved in momentum space for the trinucleon bound
state with the new Tucson-Melbourne and exchange three-nucleon
potentials. The three-nucleon potentials are combined with a variety of
realistic two-nucleon potentials. The dependence of the triton binding energy
on the cut-off parameter in the three-nucleon potentials is studied
and found to be reduced compared to the case with pure exchange. The
exchange parts of the three-nucleon potential yield an overall repulsive
effect. When the recommended parameters are employed, the calculated triton
binding energy turns out to be very close to its experimental value.
Expectation values of various components of the three-nucleon potential are
given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys.
Rev.
Potential reuse of coal mine wastewater: a case study in Quang Ninh, Vietnam
In Vietnam, the local regulation and environmental impact are driving coal mining industry to reuse the large volume of wastewater it produces. The co-research project between National University of Civil Engineering (NUCE) and Mitsubishi Rayon Corporation (MRC) has started early 2013 to evaluate if the MRC membranes could be a great tool for treatment of coal mine wastewater for reuse. The experiment were conducted at one of coal mine plants in Quang Ninh province, Vietnam. It was found that pre-treatment of coal mine wastewater was an important part in the treatment process. The MRC membrane was a significant barrier to maintain stable and high quality effluent to meet the requirement of Vietnam national technical standard for domestic use
Analyzing power in nucleon-deuteron scattering and three-nucleon forces
Three-nucleon forces have been considered to be one possibility to resolve
the well known discrepancy between experimental values and theoretical
calculations of the nucleon analyzing power in low energy nucleon-deuteron
scattering. In this paper, we investigate possible effects of two-pion exchange
three-nucleon forces on the analyzing power and the differential cross section.
We found that the reason for different effects on the analyzing power by
different three-nucleon forces found in previous calculations is related to the
existence of the contact term. Effects of some variations of two-pion exchange
three-nucleon forces are investigated. Also, an expression for the measure of
the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys.
Rev.
Momentum and Coordinate Space Three-nucleon Potentials
In this paper we give explicit formulae in momentum and coordinate space for
the three-nucleon potentials due to and meson exchange, derived
from off-mass-shell meson-nucleon scattering amplitudes which are constrained
by the symmetries of QCD and by the experimental data. Those potentials have
already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The
potentials are decomposed in a way that separates the contributions of
different physical mechanisms involved in the meson-nucleon amplitudes. The
same type of decomposition is presented for the TM force: the
, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon
request
Adjoint of the Global Eulerian Lagrangian Coupled Atmospheric transport model (A-GELCA v1.0): development and validation
Abstract. We present the development of the Adjoint of the Global Eulerian–Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian plume diffusion model (LPDM). The tangent and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com), with additional manual pre- and post-processing aimed at improving the performance of the computing, including MPI (Message Passing Interface). As results, the adjoint of Eulerian model is discrete. Construction of the adjoint of the Lagrangian component did not require any code modification, as LPDMs are able to track a significant number of particles back in time and thereby calculate the sensitivity of observations to the neighboring emissions areas. Eulerian and Lagrangian adjoint components were coupled at the time boundary in the global domain.The results are verified using a series of test experiments. The forward simulation shown the coupled model is effective in reproducing the seasonal cycle and short-term variability of CO2 even in the case of multiple limiting factors, such as high uncertainty of fluxes and the low resolution of the Eulerian model. The adjoint model demonstrates the high accuracy compared to direct forward sensitivity calculations and fast performance. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation.
</jats:p
Covariant equations for the three-body bound state
The covariant spectator (or Gross) equations for the bound state of three
identical spin 1/2 particles, in which two of the three interacting particles
are always on shell, are developed and reduced to a form suitable for numerical
solution. The equations are first written in operator form and compared to the
Bethe-Salpeter equation, then expanded into plane wave momentum states, and
finally expanded into partial waves using the three-body helicity formalism
first introduced by Wick. In order to solve the equations, the two-body
scattering amplitudes must be boosted from the overall three-body rest frame to
their individual two-body rest frames, and all effects which arise from these
boosts, including the Wigner rotations and rho-spin decomposition of the
off-shell particle, are treated exactly. In their final form, the equations
reduce to a coupled set of Faddeev-like double integral equations with
additional channels arising from the negative rho-spin states of the off-shell
particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st
Neutron-3H and Proton-3He Zero Energy Scattering
The Kohn variational principle and the (correlated) Hyperspherical Harmonics
technique are applied to study the n-3H and p-3He scattering at zero energy.
Predictions for the singlet and triplet scattering lengths are obtained for
non-relativistic nuclear Hamiltonians including two- and three-body potentials.
The calculated n-3H total cross section agrees well with the measured value,
while some small discrepancy is found for the coherent scattering length. For
the p-3He channel, the calculated scattering lengths are in reasonable
agreement with the values extrapolated from the measurements made above 1 MeV.Comment: 13 pages, REVTEX, 1 figur
- …