法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

Anal yzi ng power i n nucl eon－deut er on scat ter ing and three－nucl eon for ces

著者	I shi kawa Soui chi
出版者	The Aner i can Physi cal Soci et y
j our nal or publ i cat i on titl e	Dynami cs \＆Desi gn Conf er ence
number	3
page range	R1247－R1251
year	$1999-03$
URL	ht tp：／／hdl ．handl e．net／10114／1248

Analyzing power in nucleon-deuteron scattering and three-nucleon forces

S. Ishikawa
Department of Physics, Hosei University, 2-17-1 Fujimi, 102-8160 Tokyo, Japan and Frontier Research Center for Computational Sciences, Science University of Tokyo, 2641 Yamazaki, Noda, 278-8510 Chiba, Japan
(Received 26 October 1998)

Abstract

Three-nucleon forces have been considered to be one possibility to resolve the well-known discrepancy between experimental values and theoretical calculations of the nucleon analyzing power in low energy nucleon-deuteron scattering. In this Rapid Communication, we investigate the possible effects of two-pion exchange three-nucleon forces on the analyzing power and the differential cross section. We found that the reason for different effects on the analyzing power by different three-nucleon forces found in previous calculations is related to the existence of the contact term. Effects of some variations of two-pion exchange three-nucleon forces are investigated. Also, an expression for the measure of the nucleon analyzing power with quartet P-wave phase shifts is presented. [S0556-2813(99)50403-2]

PACS number(s): 21.45.+v, 21.30. $-\mathrm{x}, 24.70 .+\mathrm{s}, 25.10 .+\mathrm{s}$

Differential cross sections for nucleon-deuteron elastic scattering have peaks at forward and backward scattering angles and a minimum at a c.m. scattering angle of, e.g., θ $\sim 105^{\circ}$ at $E_{\mathrm{Lab}}^{N}=3 \mathrm{MeV}$. Around the cross section minimum angle, some observables calculated with realistic nucleonnucleon (NN) potentials are known to deviate systematically from experimental values [1]. The nucleon analyzing power $A_{y}(\theta)$ for energies below $\approx 30 \mathrm{MeV}$ has exhibited a notable discrepancy [2,3], which is referred to as the $A_{y}(\theta)$ puzzle. E.g., in the neutron-deuteron (n-d) elastic scattering at $E_{\text {Lab }}^{n}$ $=3 \mathrm{MeV}$, experimental $A_{y}(\theta)$ has a maximum value at θ $\sim 105^{\circ}$ [4], while theoretical calculations with modern realistic NN potentials [5-7] undershoot the value by about 30%. The three-nucleon (3 N) system has been considered as a good testing ground for the NN interaction. The discrepancy between the experimental and calculated $A_{y}(\theta)$ may show that there is room for improvement of modern NN potentials. Actually, it was pointed out that changes in ${ }^{3} P_{J}$ NN forces or the spin-orbit component of a potential cause a dramatic increase in $A_{y}(\theta)$ [8-11]. However constraint from NN observables made it difficult to obtain reasonable changes in the NN potential to resolve the $A_{y}(\theta)$ puzzle [12-14].

Another possibility for resolving the $A_{y}(\theta)$ puzzle is the introduction of a three-nucleon force (3NF) into the nuclear Hamiltonian. It is well known that most realistic NN forces underbind the triton, and a 3 NF based on the exchange of two pions among the three nucleons ($2 \pi \mathrm{E}-3 \mathrm{NF}$) can explain the needed attraction. So far, several $2 \pi \mathrm{E}-3 \mathrm{NF}$ models have been proposed, among which the Tucson-Melbourne (TM) 3NF [15] and the Brazil (the earlier version, BR^{\prime} [16], and the latter version, BR [17]) 3 NF have been used for 3 N calculations. Although these 3 NF models were made based on different ideas in constructing off-shell πN scattering amplitudes, which are important ingredients in $2 \pi \mathrm{E}-3 \mathrm{NF}$, the resulting potentials have essentially the same form with slightly different parameters. It is reported that with introducing the TM-3NF or BR-3NF, the calculated $A_{y}(\theta)$ decreases, which means that the discrepancy with the experi-
mental value is enhanced $[18,19]$. On the other hand, the calculations with the $\mathrm{BR}^{\prime}-3 \mathrm{NF}$ or another 3 NF model, the Urbana (UR) 3NF, are reported to improve $A_{y}(\theta)$ slightly [20,21]. The UR-3NF is based on the Δ-mediated two-pion exchange diagram [22], which is a part of the diagrams included in TM-3NF and BR-3NF. The discrepancy of the effects on $A_{y}(\theta)$ should arise from a structure difference between TM/BR-3NF and $\mathrm{BR}^{\prime} / \mathrm{UR}-3 \mathrm{NF}$. In this Rapid Communication, we study effects of the $2 \pi \mathrm{E}-3 \mathrm{NF}$ on $A_{y}(\theta)$ carefully and investigate the possibility of resolving the $A_{y}(\theta)$ puzzle with a 3 NF . All calculations are performed at $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}$, where experimental data are available for the differential cross section [23] and $A_{y}(\theta)$ [4]. The Argonne V_{18} model (AV18) [6] is used as the input NN potential throughout this Rapid Communication.

Our method for calculating the 3 N continuum state is based on a natural extension of the bound state calculation [24,25,19], in which the Faddeev equation is expressed as an integral equation in coordinate space. In the continuum state calculation, there appear additional singularities in the Faddeev integral kernel, which are absent in the bound state calculation: elastic singularity and three-body breakup singularity. The latter does not appear at energies below the threebody breakup threshold as in the present work. The former singularity can be easily treated by the usual subtraction method [26]. In the present calculation, 3 N partial wave states for which NN and 3 N forces act, are restricted to those with total two-nucleon angular momenta $j \leqslant 2$. The total 3 N angular momenta (J) is truncated at $J=19 / 2$, while 3 NF is switched off for 3 N states with $J \geqslant 9 / 2$. These truncating procedures are known to be valid for the low-energy ($E_{\text {Lab }}^{n}$ $=3 \mathrm{MeV}$) n-d scattering.

The two-pion exchange three-nucleon potential has the following form in momentum space:

$$
\begin{align*}
V\left(\mathbf{q}, \mathbf{q}^{\prime}\right)= & \frac{1}{(2 \pi)^{6}}\left(\frac{f_{\pi}}{\mu}\right)^{2} \frac{F\left(q^{2}\right)}{q^{2}+\mu^{2}} \frac{F\left(q^{\prime 2}\right)}{q^{\prime 2}+\mu^{2}}\left(\boldsymbol{\sigma}_{1} \cdot \mathbf{q}\right)\left(\boldsymbol{\sigma}_{2} \cdot \mathbf{q}^{\prime}\right) \\
& \times\left[\left(\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)\left\{a+b\left(\mathbf{q} \cdot \mathbf{q}^{\prime}\right)+c\left(q^{2}+q^{\prime 2}\right)\right\}\right. \\
& \left.+\left(i \vec{\tau}_{3} \cdot \vec{\tau}_{2} \times \vec{\tau}_{1}\right)\left(i \boldsymbol{\sigma}_{3} \cdot \mathbf{q} \times \mathbf{q}^{\prime}\right) d\right], \tag{1}
\end{align*}
$$

TABLE I. Various parameters for the three-nucleon potentials, Eq. (1), used in the present work.

3NF	$a\left(\mu^{-1}\right)$	$b\left(\mu^{-3}\right)$	$c\left(\mu^{-3}\right)$	$d\left(\mu^{-3}\right)$
BR^{\prime}	-1.05	-2.29	0.00	-0.768
BR	1.05	-2.29	1.05	-0.768
BR_{Δ}	0.00	-1.49	0.00	-0.373

where \mathbf{q} and \mathbf{q}^{\prime} are the momenta of the propagating pions, μ is the pion mass, and $F\left(q^{2}\right)$ a form factor which is parametrized as the dipole form with a cutoff mass Λ. The parameters, a, b, c, and d, for the $\mathrm{BR}^{\prime}-3 \mathrm{NF}$ [16] and the BR-3NF [17] are shown in Table I. Since the Brazil 3NF model is based on the effective Lagrangian approach, in which several diagrams are considered explicitly, we can separate out the $3 N F$ component which results from the Δ-mediated diagram. The parameters for this 3NF component, which should correspond to the UR-3NF, are shown in Table I as BR_{Δ}.

The cutoff mass Λ is chosen so as to reproduce the triton binding energy. The value of 700 MeV is used for the $\mathrm{BR}^{\prime}-3 \mathrm{NF}$ and the BR-3NF, and 800 MeV for the $\mathrm{BR}_{\Delta}-3 \mathrm{NF}$. Hereafter these are designated as $\mathrm{BR}_{700}^{\prime}, \mathrm{BR}_{700}$, and $\mathrm{BR}_{\Delta, 800}$, respectively.

In general, analyzing powers are defined as a difference between cross sections with different orientations of incoming particles normalized to unpolarized cross sections. Therefore, before discussing the n - d polarization observables, we make a comment on effects of a 3 NF on the unpolarized n-d differential cross section (DCS). From calculations for various combinations of NN potentials and 3NF models, we found that the calculated values of the DCS around the minimum region $\left(\theta=105^{\circ}\right)$ have a correlation with those of the triton binding energy B_{3}. This is shown in Fig. 1, where we plot the calculated values of the $\operatorname{DCS}\left(105^{\circ}\right)$ for $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}$ against the calculated B_{3}. The n-d DCS consists of spin-doublet scattering, spin-quartet scattering, and their interference terms [27]. The above correlation can be understood as a result of the well known relation between the doublet scattering length $\left({ }^{2} a\right)$ and B_{3} :

FIG. 1. Calculated values of the n-d differential cross section at $\theta=105^{\circ}$ for $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}$ plotted against the calculated triton binding energy B_{3}. The experimental value is taken from Ref. [23].

TABLE II. The results of the triton binding energy; the neutron analyzing power and the differential cross section at $\theta=105^{\circ}$ for the n-d scattering at $E_{\text {Lab }}^{n}=3 \mathrm{MeV}$ with AV18+ various 3 NF and the modified AV18 (Mod-AV18). Experimental values are $A_{y}\left(104.0^{\circ}\right)$ [4] and $\sigma\left(103.9^{\circ}\right)$ [23].

	$B_{3}(\mathrm{MeV})$	$A_{y}\left(105^{\circ}\right)(\%)$	$\sigma\left(105^{\circ}\right)(\mathrm{mb} / \mathrm{sr})$
Expt.	8.48	5.96 ± 0.13	90.6 ± 2.7
AV18	7.51	4.29	93.5
$\mathrm{AV} 18^{2}+\mathrm{BR}_{700}^{\prime}$	8.44	4.50	89.2
${\mathrm{AV} 18+\mathrm{BR}_{700}}^{8.36}$	3.62	89.6	
AV18+BR	8,800	8.37	4.43
Mod-AV18	7.53	5.11	99.5

the Phillips plot. The S-wave DCS at low-energy is proportional to $1 /\left(k^{2}+1 / a^{2}\right)$, where a is the scattering length and k is the momentum, which means that the DCS decreases if the scattering length a becomes smaller. In fact, the calculated value of the doublet scattering length, 1.35 fm for AV18 $\left(B_{3}=7.51 \mathrm{MeV}\right)$, turns out to be 0.68 fm for $\mathrm{AV} 18+\mathrm{BR}_{700}$ $\left(B_{3}=8.36 \mathrm{MeV}\right)$, while the quartet scattering length is unaffected by a 3NF. Thus the decrease of the DCS with the introduction of a 3 NF should be attributed to the reproduction of the triton binding energy. In Fig. 1, we observe that with the reproduction of B_{3}, the $\operatorname{DCS}\left(105^{\circ}\right)$ gets closer to the central value of the experiment. However, due to a rather large error bar, it is not conclusive whether the decrease is favored.

In Table II, calculated values of $B_{3} ; A_{y}\left(105^{\circ}\right)$ and $\operatorname{DCS}\left(105^{\circ}\right)$ at $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}$ are shown for AV18, $\mathrm{AV} 18+\mathrm{BR}_{700}^{\prime}, \mathrm{AV} 18+\mathrm{BR}_{700}$, and $\mathrm{AV} 18+\mathrm{BR}_{\Delta, 800}$, together with the corresponding experimental values, $A_{y}(\theta)$ at $\theta=104.0^{\circ}$ [4] and DCS at $\theta=103.9^{\circ}$ [23]. We observe a slight decrease (increase) of $A_{y}\left(105^{\circ}\right)$ for $\mathrm{AV} 18+\mathrm{BR}_{700}$ ($\mathrm{AV} 18+\mathrm{BR}_{700}^{\prime}$ and $\mathrm{AV} 18+\mathrm{BR}_{\Delta, 800}$) compared to AV 18 , which is consistent with previous calculations [18-21]. In Table II, results for a modified version of AV18 (ModAV18) [10], in which factors $0.96,0.98$, and 1.06 multiply the ${ }^{3} P_{0},{ }^{3} P_{1}$, and ${ }^{3} P_{2}$ AV18 potentials, respectively, are also shown. The modification causes relatively large effects on NN analyzing power: overshooting of peak values of neutron-proton $A_{y}(\theta)$ by about 30% and 10% for $E_{\text {Lab }}^{n}$ $=3 \mathrm{MeV}$ and 25 MeV , respectively, which has been strongly criticized [13].

The BR-3NF and the $\mathrm{BR}_{\Delta}-3 \mathrm{NF}$ give opposite $A_{y}(\theta)$ effects. From Table I, we see that there is no term corresponding to the coefficients a and c in the $\mathrm{BR}_{\Delta}-3 \mathrm{NF}$, which comes from the $\pi N S$-wave scattering amplitude. Thus it is interesting to see how each term in $2 \pi \mathrm{E}-3 \mathrm{NF}$ affects $A_{y}(\theta)$. To see this, we calculate the n-d scattering at $E_{\text {Lab }}^{n}=3 \mathrm{MeV}$ taking into account each term corresponding to the parameter a, or b, or c, or d in BR_{700} in addition to AV18. Each potential is designated as $\mathrm{BR}_{a}, \mathrm{BR}_{b}, \mathrm{BR}_{c}$, and BR_{d}, respectively. The results are shown in Table III. From Table III, we see that $A_{y}\left(105^{\circ}\right)$ decreases for $\mathrm{BR}_{a}, \mathrm{BR}_{c}$, and BR_{d}, but increases for BR_{b}. Especially BR_{c} gives a large $A_{y}\left(105^{\circ}\right)$ effect. From this, it is concluded that the contribution from BR_{b} is larger than the one from the other terms in $\mathrm{BR}^{\prime}-3 \mathrm{NF}$, $\mathrm{BR}_{\Delta}-3 \mathrm{NF}$, and UR-3NF to give a small increase in $A_{y}(\theta)$,

TABLE III. The results of the triton binding energy; the neutron analyzing power and the differential cross section at $\theta=105^{\circ}$ for the n-d scattering at $E_{\text {Lab }}^{n}=3 \mathrm{MeV}$ with AV18+ each term in BR3NF.

	$B_{3}(\mathrm{MeV})$	$A_{y}\left(105^{\circ}\right)(\%)$	$\sigma\left(105^{\circ}\right)(\mathrm{mb} / \mathrm{sr})$
${\mathrm{AV} 18+\mathrm{BR}_{a}}^{\mathrm{AV} 18+\mathrm{BR}_{b}}$	7.48	4.17	93.7
${\mathrm{AV} 18+\mathrm{BR}_{c}}^{\mathrm{AV}^{2}+\mathrm{BR}_{d}}$	7.25	4.55	90.0

while the contribution from BR_{c} is overwhelming in lowering $A_{y}(\theta)$ in BR-3NF and TM-3NF. The BR_{c} includes the so-called contact term, which was argued to be excluded to avoid an odd behavior of the 3NF at short range [17], or from a viewpoint of chiral constraints [28]. It is noted that $\mathrm{BR}^{\prime}-3 \mathrm{NF}$ is obtained from BR-3NF with a prescription to remove the contact term: replacing the coefficient a by a $-2 \mu^{2} c$ and setting c to zero. Therefore we may express that the different $A_{y}(\theta)$ effect of BR-3NF from that of $\mathrm{BR}^{\prime}-3 \mathrm{NF}$ arises from the existence of the contact term.

In the $\mathrm{AV} 18+\mathrm{BR}_{700}^{\prime}\left(\mathrm{AV} 18+\mathrm{BR}_{\Delta, 800}\right)$ calculation, the $\operatorname{DCS}\left(105^{\circ}\right)$ decreases by 5% (4\%) compared to the AV18 calculation, while $A_{y}\left(105^{\circ}\right)$ increases by 5% (3\%). On the other hand, in the Mod-AV18 calculation, $A_{y}\left(105^{\circ}\right)$ increases with little change in the $\operatorname{DCS}\left(105^{\circ}\right)$. Thus there is an essential difference between effects on $A_{y}(\theta)$ from the $2 \pi \mathrm{E}$ 3NF and from the modification of the ${ }^{3} P_{J}$ NN force. The former is an increase in $A_{y}(\theta)$ simply due to the decrease of the DCS due to the effect of reproducing the triton binding energy.

In Table III, we observe that each term in BR-3NF gives quite different effects in $A_{y}(\theta)$. Next, we investigate each effect of the four terms in the $2 \pi \mathrm{E}-3 \mathrm{NF}$. To do so, we introduced only the $a(b, c, d)$-term as a 3NF by varying the coefficient of $a(b, c, d)$ to reproduce the triton binding energy. These 3NF models are designated as W_{a}, W_{b}, W_{c}, and W_{d}. The results are shown in Table IV together with the values of the coefficients. Although the change of sign in a and c, and of the magnitude in a compared to the original values in Table I may be unnatural, these 3NF models might be useful as phenomenological ones which reproduce the triton binding energy within a restricted functional form. A

TABLE IV. The results of the triton binding energy; the neutron analyzing power and the differential cross section at $\theta=105^{\circ}$ for the n-d scattering at $E_{\text {Lab }}^{n}=3 \mathrm{MeV}$ with AV18 $+\mathrm{W}_{a}, W_{b}, W_{c}$, and W_{d}.

	$B_{3}(\mathrm{MeV})$	$A_{y}\left(105^{\circ}\right)(\%)$	$\sigma\left(105^{\circ}\right)(\mathrm{mb} / \mathrm{sr})$
$\mathrm{AV} 18+W_{a}$ $\left(a=-14.4 \mu^{-1}\right)$	8.49	5.93	89.0
$\mathrm{AV} 18+W_{b}$ $\left(b=-2.90 \mu^{-3}\right)$	8.50	4.64	89.0
$\mathrm{AV} 18+W_{c}$ $\left(c=-1.25 \mu^{-3}\right)$	8.49	5.13	88.8
$\mathrm{AV} 18+W_{d}$ $\left(d=-3.10 \mu^{-3}\right)$	8.50	3.65	88.9

FIG. 2. $A_{y}(\theta)$ at $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}($ a $)$ and $T_{20}(\theta)$ at $E_{\mathrm{Lab}}^{d}=6 \mathrm{MeV}$ (b) calculated with AV18 (solid lines) and AV18+ W_{a} (dashed lines). Experimental data of $A_{y}(\theta)$ are taken from Ref. [4].
variety of $A_{y}(\theta)$ effects are observed from these 3 NF models: a large increase due to W_{a}; a small increase due to W_{b} and W_{c}; a relatively large decrease due to W_{d}, besides the decrease of in the $\operatorname{DCS}\left(105^{\circ}\right)$ due to the binding energy effect. It is remarkable that W_{a} seems to reproduce the experimental value of $A_{y}\left(105^{\circ}\right)$ quite well. However, it turns out that the deuteron tensor analyzing powers are modified improperly by W_{a} at the same time. In Fig. 2, we plot $A_{y}(\theta)$ at $E_{\mathrm{Lab}}^{n}=3 \mathrm{MeV}$ (a) and $T_{20}(\theta)$ at $E_{\mathrm{Lab}}^{d}=6 \mathrm{MeV}$ (b) calculated with AV18 (solid lines) and AV18+ W_{a} (dashed lines). We see that the experimental data for $A_{y}(\theta)$ are well reproduced with the introduction of W_{a}, and $T_{20}(\theta)$ is significantly modified. Although there is no $T_{20}(\theta)$ data for n-d scattering, recent precise measurements of tensor analyzing powers for proton-deuteron scattering are reported to be well reproduced by calculations without a 3NF [29]. Thus such distortion of $T_{20}(\theta)$ for $\mathrm{n}-\mathrm{d}$ scattering may produce another "puzzle."

It is found that the $W_{a}-3 N F$ gives a different effect on n-d polarization observables than other 3NF models. We remark that this difference can be seen in the n -d quartet P-wave phase-shifts: $\delta_{P_{1 / 2}}, \delta_{{ }^{4} P_{3 / 2}}$, and $\delta_{{ }^{4} P_{5 / 2}}$, to which $A_{y}(\theta)$ is known to be sensitive. The relation between the n - d phase shifts and $A_{y}(\theta)$ is quite complicated, but as derived in the Appendix, a combination

$$
\begin{equation*}
-4 M_{{ }_{4} P_{1 / 2}}-5 M_{{ }_{4} P_{3 / 2}}+9 M_{{ }^{4} P_{5 / 2}} \tag{2}
\end{equation*}
$$

appears in an expression for $A_{y}(\theta)$, where $M_{4} P_{J}$ $=\exp \left(i \delta_{4_{P_{J}}}\right) \sin \left(\delta_{4_{J}}\right)$. For small phase shift differences, Eq. (2) is proportional to

TABLE V. Phase shift for the $\mathrm{n}-\mathrm{d}{ }^{4} P_{1 / 2}$ state and the differences $\Delta_{3 / 2-1 / 2}$ and $\Delta_{5 / 2-3 / 2}$, which are defined in the text, at $E_{\text {Lab }}^{n}$ $=3 \mathrm{MeV}$.

	$\delta_{4}{ }^{1 / 2}$	$\Delta_{3 / 2-1 / 2}$	$\Delta_{5 / 2-3 / 2}$
AV18	24.2	1.9	0.1
$\mathrm{AV} 18+\mathrm{BR}_{700}$	24.5	1.9	-0.2
$\mathrm{AV} 18+\mathrm{BR}_{700}^{\prime}$	24.6	1.4	0.4
$\mathrm{AV} 18+\mathrm{BR}_{\Delta, 800}$	24.5	1.6	0.3
Mod-AV18	24.0	2.2	0.2
$\mathrm{AV} 18+W_{a}$	24.9	0.2	1.4

$$
\begin{equation*}
4 \Delta_{3 / 2-1 / 2}+9 \Delta_{5 / 2-3 / 2} \tag{3}
\end{equation*}
$$

where $\Delta_{J-J^{\prime}}=\delta_{4_{P_{J}}}-\delta_{4_{J_{J^{\prime}}}}$. Equation (3) is a convenient expression for $A_{y}(\theta)$ being consistent with results of threenucleon phase shift analysis [10]. In Table V, we list the calculated values of $\delta_{P^{\prime}}, \Delta_{3 / 2-1 / 2}$, and $\Delta_{5 / 2-3 / 2}$ for some models presented in this work. From Table V we see that $\Delta_{5 / 2-3 / 2} \sim 0$ for most cases except for W_{a}, for which $\Delta_{3 / 2-1 / 2} \sim 0$. Therefore, $A_{y}(\theta)$ is proportional to $9 \Delta_{5 / 2-3 / 2}$ $\left(4 \Delta_{3 / 2-1 / 2}\right)$ for W_{a} (the other 3NF models). The difference of the factors, 9 and 4 , explains the reason why W_{a} gives a large increase in $A_{y}(\theta)$ in spite of the same order of the phase shift differences, $\Delta_{5 / 2-3 / 2}$ and $\Delta_{3 / 2-1 / 2}$. However, the difference seems to affect incorrectly the deuteron tensor analyzing powers.

In summary, we have studied the effects of the $2 \pi \mathrm{E}-3 \mathrm{NF}$, and its variations, on some observables for n-d elastic scattering at low energy. We found that a contact term included in the $2 \pi \mathrm{E}-3 \mathrm{NF}$ gives a rather large $A_{y}(\theta)$ effect. This is the reason why the effects on $A_{y}(\theta)$ by $\mathrm{BR} / \mathrm{TM}-3 \mathrm{NF}$ are different from those by $\mathrm{BR}^{\prime} / \mathrm{UR}-3 \mathrm{NF}$, which does not include the contact term. $A_{y}(\theta)$ increases by about 5% with a $2 \pi \mathrm{E}-3 \mathrm{NF}$ model in which the contact term is eliminated. However, this increase is essentially the result of a decrease in the differential cross section caused by reproducing the triton binding energy. This contrasts with the increase of $A_{y}(\theta)$ by the modification of the ${ }^{3} P_{J}$ NN force, which is caused by a variation in spin-dependent cross sections. We found a phenomenological 3NF model which reproduces both of the triton binding energy and $A_{y}(\theta)$. This 3NF originates from πN S wave scattering in the intermediate state with the strength parameter adjusted to reproduce the triton binding energy. But this 3NF destroys the good fit of the tensor analyzing power at the same time. Since forces arising from the exchange of pions should have a tensor character, it seems natural that such forces affect not only the spin vector observables but also the spin tensor observables. A 3NF involving any mechanism other than $2 \pi \mathrm{E}$, which might have a character of a spin-orbit forces as suggested from the modification of the ${ }^{3} P_{J}$ NN force, should be examined to resolve the $A_{y}(\theta)$ puzzle.

Appendix. In the spherical base, $A_{y}(\theta)$ is given by

$$
\begin{equation*}
I(\theta) A_{y}(\theta)=i I(\theta)\left(T_{+1}(\theta)+T_{-1}(\theta)\right) / \sqrt{2} \tag{4}
\end{equation*}
$$

with $I(\theta)=\operatorname{Tr}\left(M M^{\dagger}\right)$, and $I(\theta) T_{\kappa}(\theta)=\operatorname{Tr}\left(M \tau_{\kappa}^{1} M^{\dagger}\right)$, where
M is a transition matrix and τ_{κ}^{1} is a nucleon rank-1 spin operator, whose matrix elements in the channel-spin representation are

$$
\begin{align*}
\langle s \nu| \tau_{\kappa}^{1}\left|s^{\prime} \nu^{\prime}\right\rangle= & (-1)^{2 s+(1 / 2)-\nu^{\prime}} \sqrt{2} \hat{s} \hat{s}^{\prime} \\
& \times\left(s s^{\prime}-\nu \nu^{\prime} \mid 1-\kappa\right)\left\{\begin{array}{ccc}
s & s^{\prime} & 1 \\
1 / 2 & 1 / 2 & 1
\end{array}\right\} . \tag{5}
\end{align*}
$$

Here, $\hat{n}=\sqrt{2 n+1}$, and s is the channel-spin.
With partial-wave amplitudes, $M_{s l s^{\prime} l^{\prime}}^{J}$, the transition matrix elements, $M_{s \nu s^{\prime} \nu^{\prime}}$, are given as [30]

$$
\begin{align*}
M_{s \nu s^{\prime} \nu^{\prime}}(\theta)= & \sum_{J, l, l^{\prime}, m_{l}} \hat{l}^{\prime}\left(s l \nu m_{l} \mid J \nu^{\prime}\right) \\
& \times\left(s^{\prime} l^{\prime} \nu^{\prime} 0 \mid J \nu^{\prime}\right) M_{s l s^{\prime} l}^{J} Y_{l}^{m_{l}}(\theta, 0) . \tag{6}
\end{align*}
$$

Here, we apply some assumptions.
(i) We assume off-diagonal matrix elements of the partial wave amplitude vanish:

$$
\begin{equation*}
M_{s l s^{\prime} l^{\prime}}^{J}=\delta_{s, s^{\prime}} \delta_{l, l^{\prime}} M_{2 s+{ }_{l} l_{J}} \tag{7}
\end{equation*}
$$

(ii) Since we are interested in ${ }^{4} P_{J}$ waves, we consider contributions only from $s=3 / 2$. Then we have

$$
\begin{align*}
I(\theta) T_{\kappa}(\theta)= & 4 \sum_{\nu, \nu^{\prime}, \nu^{\prime \prime}}(-1)^{-1 / 2-\nu^{\prime}} M_{\nu \nu^{\prime}} M_{\nu \nu^{\prime \prime}}^{*} \\
& \times\left(\left.\frac{3}{2} \frac{3}{2}-\nu^{\prime} \nu^{\prime \prime} \right\rvert\, 1-\kappa\right)\left\{\begin{array}{lll}
3 / 2 & 3 / 2 & 1 \\
1 / 2 & 1 / 2 & 1
\end{array}\right\}, \tag{8}
\end{align*}
$$

with

$$
\begin{align*}
M_{\nu \nu^{\prime}}(\theta)= & \sum_{J, l, m_{l}} \hat{l}\left(\left.\frac{3}{2} l \nu m_{l} \right\rvert\, J \nu^{\prime}\right)\left(\left.\frac{3}{2} l \nu^{\prime} 0 \right\rvert\, J \nu^{\prime}\right) \\
& \times M_{4_{l}} Y_{l}^{m_{l}}(\theta, 0), \tag{9}\\
M_{\nu \nu^{\prime \prime}}^{*}(\theta)= & \sum_{J^{\prime}, l^{\prime}, m_{l}^{\prime}} \hat{l}^{\prime}\left(\left.\frac{3}{2} l^{\prime} \nu m_{l}^{\prime} \right\rvert\, J^{\prime} \nu^{\prime \prime}\right)\left(\left.\frac{3}{2} l^{\prime} \nu^{\prime \prime} 0 \right\rvert\, J \nu^{\prime \prime}\right) \\
& \times M_{4 l_{J}^{\prime}}^{*} Y_{l^{\prime}}^{m_{l}^{\prime} *}(\theta, 0) . \tag{10}
\end{align*}
$$

(iii) It is noted that the shape of $I(\theta) A_{y}(\theta)$ for the n -d scattering is roughly given by $\sin \theta$. This θ dependence arises when $\left(l, m_{l}, l^{\prime}, m_{l}^{\prime}\right)=(1, \pm 1,0,0)$, or $(0,0,1, \pm 1)$. For these cases, after evaluating the summation over ν, ν^{\prime} and m_{l} in Eq. (8), we obtain

$$
\begin{align*}
I(\theta) T_{\kappa}(\theta) & \propto
\end{align*} Y_{1}^{\kappa}(\theta, 0) M_{4_{1 / 2}}^{*} \sum_{J} M_{4_{P}} .
$$

The summation in Eq. (11) is proportional to Eq. (2).
[1] W. Glöckle, H. Witała, D. Hüber, H. Kamada, and J. Golak, Phys. Rep. 274, 107 (1996).
[2] Y. Koike and J. Haidenbauer, Nucl. Phys. A463, 365c (1987).
[3] H. Witała, W. Glöckle, and T. Cornelius, Nucl. Phys. A491, 157 (1988).
[4] J. E. McAninch, L. O. Lamm, and W. Haeberli, Phys. Rev. C 50, 589 (1994).
[5] V. G. J. Stokes, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).
[6] R. B. Wiringa, V. G. J. Stokes, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
[7] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, R1483 (1996).
[8] H. Witała and W. Glöckle, Nucl. Phys. A528, 48 (1991).
[9] T. Takemiya, Prog. Theor. Phys. 86, 975 (1991).
[10] W. Tornow, H. Witała, and A. Kievsky, Phys. Rev. C 57, 555 (1998).
[11] P. Doleschall, Few-Body Syst. 23, 149 (1998).
[12] H. Witała, W. Glöckle, and T. Takemiya, Prog. Theor. Phys. 88, 1015 (1992).
[13] D. Hüber and J. L. Friar, Phys. Rev. C 58, 674 (1998).
[14] W. Tornow and H. Witała, Nucl. Phys. A637, 280 (1998).
[15] S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242 (1979); S. A. Coon and W. Glöckle, Phys. Rev. C 23, 1790 (1981).
[16] H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C 28, 1812 (1983).
[17] M. R. Robilotta and H. T. Coelho, Nucl. Phys. A460, 645 (1986).
[18] H. Witała, D. Hüber, and W. Glöckle, Phys. Rev. C 49, R14 (1994).
[19] S. Ishikawa, Y. Wu, and T. Sasakawa, Proceedings of the Few-Body Problems in Physics, Williamsburg, VA, 1994, edited by F. Gross, AIP Conf. Proc. 334 (AIP, New York, 1995), p. 840 .
[20] A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 52, R15 (1995).
[21] A. Kievsky, S. Rosati, W. Tornow, and M. Viviani, Nucl. Phys. A607, 402 (1996).
[22] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).
[23] P. Schwarz, H. O. Klages, P. Doll, B. Haesner, J. Wilczynski, B. Zeitnitz, and J. Kecskemeti, Nucl. Phys. A398, 1 (1983).
[24] T. Sasakawa and S. Ishikawa, Few-Body Syst. 1, 3 (1986).
[25] S. Ishikawa, Nucl. Phys. A463, 145c (1987).
[26] T. Sasakawa, Phys. Rev. C 17, 2015 (1978).
[27] Y. Koike and Y. Taniguchi, Few-Body Syst. 1, 13 (1986).
[28] J. L. Friar, D. Hüber, and U. van Kolck, Phys. Rev. C 59, 53 (1999).
[29] S. Shimizu, K. Sagara, H. Nakamura, K. Maeda, T. Miwa, N. Nishimori, S. Ueno, T. Nakashima, and S. Morinobu, Phys. Rev. C 52, 1193 (1995).
[30] R. G. Seyler, Nucl. Phys. A124, 253 (1969).

