5,890 research outputs found
Squeezing on momentum states for atom interferometry
We propose and analyse a method that allows for the production of squeezed
states of the atomic center-of-mass motion that can be injected into an atom
interferometer. Our scheme employs dispersive probing in a ring resonator on a
narrow transition of strontium atoms in order to provide a collective
measurement of the relative population of two momentum states. We show that
this method is applicable to a Bragg diffraction-based atom interferometer with
large diffraction orders. The applicability of this technique can be extended
also to small diffraction orders and large atom numbers by inducing atomic
transparency at the frequency of the probe field, reaching an interferometer
phase resolution scaling , where is the atom
number. We show that for realistic parameters it is possible to obtain a 20 dB
gain in interferometer phase estimation compared to the Standard Quantum Limit.Comment: 5 pages, 4 figure
Energy Conversion Using New Thermoelectric Generator
During recent years, microelectronics helped to develop complex and varied
technologies. It appears that many of these technologies can be applied
successfully to realize Seebeck micro generators: photolithography and
deposition methods allow to elaborate thin thermoelectric structures at the
micro-scale level. Our goal is to scavenge energy by developing a miniature
power source for operating electronic components. First Bi and Sb micro-devices
on silicon glass substrate have been manufactured with an area of 1cm2
including more than one hundred junctions. Each step of process fabrication has
been optimized: photolithography, deposition process, anneals conditions and
metallic connections. Different device structures have been realized with
different micro-line dimensions. Each devices performance will be reviewed and
discussed in function of their design structure.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Conics constructions by pins and string: tangential and physical properties
2noopenWe introduce conic sections' construction by pins and string, without rigid linear components. In addition to well-known methods (as gardener’s ellipse), we analyze some recent constructions based on tangent properties and, as an
original contribution, extend these constructions to all kinds of conics. In this setting, the physical analysis of the string's tension permits us to smoothly analyze these
constructions since the first years of high school.
From a didactical perspective, we think that such ideas can be fruitfully adopted in laboratory activities to deepen the tangential properties of conics by a rich
interaction between mathematics and physics. Furthermore, the simplicity of the required materials allows the introduction of these manipulative activities in distance
learning.openMilici P; Salvi MMilici, P; Salvi,
Molecular detection of parasites (Trematoda, Digenea: Bucephalidae and Monorchiidae) in the European flat oyster Ostrea edulis (Mollusca: Bivalvia)
Members of the globally distributed bivalve family Ostreidae (oysters) have a significant role in marine ecosystems and include species of high economic importance. In this work, we report the occurrence of digenean parasites of the families Bucephalidae (Prosorhynchoides sp.) and Monorchiidae (Postmonorchis sp.) in Mediterranean native populations of Ostrea edulis (but not in the introduced Magallana gigas). Molecular detection was based on DNA sequencing of the ribosomal intergenic spacer 2 (ITS2) marker. The importance of detecting the presence of overlooked digenean parasites in Mediterranean oysters is discussed. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
Sensitivity limits of a Raman atom interferometer as a gravity gradiometer
We evaluate the sensitivity of a dual cloud atom interferometer to the
measurement of vertical gravity gradient. We study the influence of most
relevant experimental parameters on noise and long-term drifts. Results are
also applied to the case of doubly differential measurements of the
gravitational signal from local source masses. We achieve a short term
sensitivity of 3*10^(-9) g/Hz^(-1/2) to differential gravity acceleration,
limited by the quantum projection noise of the instrument. Active control of
the most critical parameters allows to reach a resolution of 5*10^(-11) g after
8000 s on the measurement of differential gravity acceleration. The long term
stability is compatible with a measurement of the gravitational constant G at
the level of 10^(-4) after an integration time of about 100 hours.Comment: 19 pages, 20 figure
- …