84 research outputs found

    On the K^+D Interaction at Low Energies

    Full text link
    The Kd reactions are considered in the impulse approximation with NN final-state interactions (NN FSI) taken into account. The realistic parameters for the KN phase shifts are used. The "quasi-elastic" energy region, in which the elementary KN interaction is predominantly elastic, is considered. The theoretical predictions are compared with the data on the K^+d->K^+pn, K^+d->K^0pp, K^+d->K^+d and K^+d total cross sections. The NN FSI effect in the reaction K^+d->K^+pn has been found to be large. The predictions for the Kd cross sections are also given for slow kaons, produced from phi(1020) decays, as the functions of the isoscalar KN scattering length a_0. These predictions can be used to extract the value of a_0 from the data.Comment: 22 pages, 5 figure

    Pentaquark as Kaon-Nucleon Resonance

    Full text link
    Several recent experiments have reported evidence for a narrow feature in the K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and with a width < 25 MeV. This state has been labelled as Theta(+) (previously as Z(*)), and because of the implied inclusion of a anti-strange quark, is referred to as a pentaquark, that is, five quarks within a single bag. We present an alternative explanation for such a structure, as a higher angular momentum resonance in the isospin zero K(+) -N system. One might call this an exit channel or a molecular resonance. In a non-relativistic potential model we find a possible candidate for the kaon-nucleon system with relative angular momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to confine the kaon and nucleon in a narrow state at an energy so high above threshold. A rather strong state-dependence in the potential is essential, however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page

    On kaonic hydrogen. Phenomenological quantum field theoretic model revisited

    Full text link
    We argue that due to isospin and U-spin invariance of strong low-energy interactions the S-wave scattering lengths a^0_0 and a^1_0 of bar-KN scattering with isospin I=0 and I = 1 satisfy the low-energy theorem a^0_0 + 3 a^1_0 = 0 valid to leading order in chiral expansion. In the model of strong low-energy bar-KN interactions at threshold (EPJA 21,11 (2004)) we revisit the contribution of the Sigma(1750) resonance, which does not saturate the low-energy theorem a^0_0 + 3 a^1_0 = 0, and replace it by the baryon background with properties of an SU(3) octet. We calculate the S-wave scattering amplitudes of K^-N and K^-d scattering at threshold. We calculate the energy level displacements of the ground states of kaonic hydrogen and kaonic deuterium. The result obtained for kaonic hydrogen agrees well with recent experimental data by the DEAR Collaboration. We analyse the cross sections for elastic and inelastic K^-p scattering for laboratory momenta of the incident K^- meson from the domain 70 MeV/c < p_K < 150 MeV/c. The theoretical results agree with the available experimental data within two standard deviations.Comment: 20 pages, Latex, We have slightly corrected the contribution of the double scattering. This changes the S-wave scattering length of K^-d scattering by 17%, which is commensurable with the theoretical uncertaint

    Aspects of Strangeness -1 Meson-Baryon Scattering

    Full text link
    We consider meson-baryon interactions in S-wave with strangeness -1. This is a sector populated by plenty of resonances interacting in several two-body coupled channels. We consider a large set of experimental data, where the recent experiments are remarkably accurate. This requires a sound theoretical description to account for all the data and we employ Unitary Chiral Perturbation Theory up to and including O(p^2). The spectroscopy of our solutions is studied within this approach, discussing the rise from the pole content of two \Lambda(1405) resonances and of the \Lambda(1670), \Lambda(1800), \Sigma(1480), \Sigma(1620) and \Sigma(1750). We finally argue about our preferred fit.Comment: 6 figures, 3 figures, talk given in the IVth International Conference on Quarks and Nuclear Physics (QNP06), Madrid June 5th and 10th, 2006. One reference is update

    Flavor SU(3) breaking effects in the chiral unitary model for meson-baryon scatterings

    Full text link
    We examine flavor SU(3) breaking effects on meson-baryon scattering amplitudes in the chiral unitary model. It turns out that the SU(3) breaking, which appears in the leading quark mass term in the chiral expansion, can not explain the channel dependence of the subtraction parameters of the model, which are crucial to reproduce the observed scattering amplitudes and resonance properties.Comment: RevTeX4, 4 pages, 3 figures, 2 table

    First Measurement of A_N at sqrt(s)=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

    Get PDF
    We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.Comment: 13 pages, 5 figures. New values of polarization errors. Final version submitted to Phys. Lett.

    Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

    Get PDF
    We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.Comment: 13 pages with 3 figures. Final version accepted by Phys. Lett.

    Initial State Interactions for K−K^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the K−−pK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy K−−pK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte
    • 

    corecore