401 research outputs found
Un\u2019analisi delle caratteristiche strutturali e delle tendenze delle imprese agroalimentari del Piceno
Metastability and small eigenvalues in Markov chains
In this letter we announce rigorous results that elucidate the relation
between metastable states and low-lying eigenvalues in Markov chains in a much
more general setting and with considerable greater precision as was so far
available. This includes a sharp uncertainty principle relating all low-lying
eigenvalues to mean times of metastable transitions, a relation between the
support of eigenfunctions and the attractor of a metastable state, and sharp
estimates on the convergence of probability distribution of the metastable
transition times to the exponential distribution.Comment: 5pp, AMSTe
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file
Tunneling and Metastability of continuous time Markov chains
We propose a new definition of metastability of Markov processes on countable
state spaces. We obtain sufficient conditions for a sequence of processes to be
metastable. In the reversible case these conditions are expressed in terms of
the capacity and of the stationary measure of the metastable states
Foreign land acquisitions and environmental regulations: Does the pollution-haven effect hold?
The recent wave of foreign land acquisitions (FLA) has raised several concerns in terms of their environmental and social sustainability. An unexplored issue is whether pollution-haven mechanisms are driving the pattern of FLA. This paper investigates whether and how differences in environmental stringency between investing and target country affect the pattern of FLA. We estimate a panel gravity equation and use different indexes to measure the environmental stringency. Our results show that, by and large, differences in environmental stringency do affect FLA. The wider the gap in the environmental stringency between the investor and the target country, the higher is the number of firms investing abroad. Our results also show that the impact of environmental stringency differentials on FLA depends on the investor country and on corruption in the target country, and that in a number of estimations the choice over the index of stringency may be a relevant factor
Entropy-driven cutoff phenomena
In this paper we present, in the context of Diaconis' paradigm, a general
method to detect the cutoff phenomenon. We use this method to prove cutoff in a
variety of models, some already known and others not yet appeared in
literature, including a chain which is non-reversible w.r.t. its stationary
measure. All the given examples clearly indicate that a drift towards the
opportune quantiles of the stationary measure could be held responsible for
this phenomenon. In the case of birth- and-death chains this mechanism is
fairly well understood; our work is an effort to generalize this picture to
more general systems, such as systems having stationary measure spread over the
whole state space or systems in which the study of the cutoff may not be
reduced to a one-dimensional problem. In those situations the drift may be
looked for by means of a suitable partitioning of the state space into classes;
using a statistical mechanics language it is then possible to set up a kind of
energy-entropy competition between the weight and the size of the classes.
Under the lens of this partitioning one can focus the mentioned drift and prove
cutoff with relative ease.Comment: 40 pages, 1 figur
Finite morphic -groups
According to Li, Nicholson and Zan, a group is said to be morphic if, for
every pair of normal subgroups, each of the conditions and implies the other. Finite, homocyclic
-groups are morphic, and so is the nonabelian group of order and
exponent , for an odd prime. It follows from results of An, Ding and
Zhan on self dual groups that these are the only examples of finite, morphic
-groups. In this paper we obtain the same result under a weaker hypotesis.Comment: 7 pages. Critical reference added, and manuscript revised accordingl
Elements of prime order in the upper central series of a group of prime-power order
We investigate the occurrence of elements of order in the upper central
series of a finite -group.Comment: 6 page
The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3
We consider an Euclidean supersymmetric field theory in given by a
supersymmetric perturbation of an underlying massless Gaussian measure
on scalar bosonic and Grassmann fields with covariance the Green's function of
a (stable) L\'evy random walk in . The Green's function depends on the
L\'evy-Khintchine parameter with . For
the interaction is marginal. We prove for
sufficiently small and initial
parameters held in an appropriate domain the existence of a global
renormalization group trajectory uniformly bounded on all renormalization group
scales and therefore on lattices which become arbitrarily fine. At the same
time we establish the existence of the critical (stable) manifold. The
interactions are uniformly bounded away from zero on all scales and therefore
we are constructing a non-Gaussian supersymmetric field theory on all scales.
The interest of this theory comes from the easily established fact that the
Green's function of a (weakly) self-avoiding L\'evy walk in is a second
moment (two point correlation function) of the supersymmetric measure governing
this model. The control of the renormalization group trajectory is a
preparation for the study of the asymptotics of this Green's function. The
rigorous control of the critical renormalization group trajectory is a
preparation for the study of the critical exponents of the (weakly)
self-avoiding L\'evy walk in .Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition
of norms involving fermions to ensure uniqueness. 2. change in the definition
of lattice blocks and lattice polymer activities. 3. Some proofs have been
reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos
corrected.This is the version to appear in Journal of Statistical Physic
Abrupt Convergence and Escape Behavior for Birth and Death Chains
We link two phenomena concerning the asymptotical behavior of stochastic
processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape
behavior usually associated to exit from metastability. The former is
characterized by convergence at asymptotically deterministic times, while the
convergence times for the latter are exponentially distributed. We compare and
study both phenomena for discrete-time birth-and-death chains on Z with drift
towards zero. In particular, this includes energy-driven evolutions with energy
functions in the form of a single well. Under suitable drift hypotheses, we
show that there is both an abrupt convergence towards zero and escape behavior
in the other direction. Furthermore, as the evolutions are reversible, the law
of the final escape trajectory coincides with the time reverse of the law of
cut-off paths. Thus, for evolutions defined by one-dimensional energy wells
with sufficiently steep walls, cut-off and escape behavior are related by time
inversion.Comment: 2 figure
- …
