359 research outputs found

    Interplay between incommensurate phases in the cuprates

    Full text link
    We establish the qualitative behavior of the incommensurability ϵ\epsilon, optimal domain wall filling ν\nu and chemical potential μ\mu for increasing doping by a systematic slave-boson study of an array of vertical stripes separated by up to d=11d=11 lattice constants. Our findings obtained in the Hubbard model with the next-nearest neighbor hopping t=0.15tt'=-0.15t agree qualitatively with the experimental data for the cuprates in the doping regime x1/8x\lesssim 1/8. It is found that tt' modifies the optimal filling ν\nu and triggers the crossover to the diagonal (1,1) spiral phase at increasing doping, stabilized already at x0.09x\simeq 0.09 for t=0.3tt'=-0.3t.Comment: 7 pages, 4 figures, EPL styl

    The hardening in alloys and composites and its examination with a diffraction and self-consistent model

    Get PDF
    The paper presents the results of diffraction stress measurement in Al/SiC composite and in 2124T6 aluminum alloy during the in situ tensile test. The main aim of the work is to observe the stress values for different stages of tensile test for the composite after applying two types of thermal treatment and for the alloy used as a matrix in this composite, to identify the type of hardening process. The experimental results were compared against the calculations results obtained from the self-consistent model developed by Baczmański [1] - [3] to gain the information about the micromechanical properties (critical resolved shear stress τcr_{cr} and hardening parameter H) of the examined materials. This comparison allowed researchers to determine the role of reinforcement in the composite as well as the impact of the heat treatment on the hardening of the material

    Quantum transport and mobility spectrum of topological carriers in (001) SnTe/PbTe heterojunctions

    Full text link
    Measurements of magnetotransport in SnTe/PbTe heterojunctions grown by the MBE technique on (001) undoped CdTe substrates were performed. At low magnetic fields, quantum corrections to conductivity were observed that may be attributed to the presence of topological states at the junction interface. For a sample with 5 nm thick SnTe layer, the data analysis suggests that midgap states are actually gapped. However, the phase coherence effects in 10 nm and 20 nm SnTe/PbTe samples are fully explained assuming existence of gapless Dirac cones. Magnetotransport at higher magnetic fields is described in the framework of mobility spectrum analysis (MSA). We demonstrate that the electron- and hole-like peaks observed simultaneously for all SnTe/PbTe heterojunctions may originate from the concave and convex parts of the energy isosurface for topological states -- and not from the existence of quasiparticles both carrying negative and positive charges. This interpretation is supported by numerical calculations of conductivity tensor components for gapless (100) Dirac cones, performed within a classical model and based on the solutions of Boltzmann transport equation. Our approach shows the feasibility of MSA in application to magnetotransport measurements on topological matter

    Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells

    Full text link
    We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by the edge channels, as expected for a two-dimensional topological insulator. However, high and non-quantized values of channel resistances show that the topological protection length (i.e. the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is ~100 micrometers. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasi-periodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio

    Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: revtex4; 4+ pages, 5 figure

    A spin field effect transistor for low leakage current

    Full text link
    In a spin field effect transistor, a magnetic field is inevitably present in the channel because of the ferromagnetic source and drain contacts. This field causes random unwanted spin precession when carriers interact with non-magnetic impurities. The randomized spins lead to a large leakage current when the transistor is in the ``off''-state, resulting in significant standby power dissipation. We can counter this effect of the magnetic field by engineering the Dresselhaus spin-orbit interaction in the channel with a backgate. For realistic device parameters, a nearly perfect cancellation is possible, which should result in a low leakage current.Comment: To appear in Physica E. The revised version has additional material which addresses the issue of which way the contacts should be magnetized in a Spin Field Effect Transistor. This was neither addressed in the previous version, nor in the upcoming journal pape

    Low energy states with different symmetries in the t-J model with two holes on a 32-site lattice

    Full text link
    We study the low energy states of the t-J model with two holes on a 32-site lattice with periodic boundary conditions. In contrary to common belief, we find that the state with d_{x^2-y^2} symmetry is not always the ground state in the realistic parameter range 0.2\le J/t\le 0.4. There exist low-lying finite-momentum p-states whose energies are lower than the d_{x^2-y^2} state when J/t is small enough. We compare various properties of these low energy states at J/t=0.3 where they are almost degenerate, and find that those properties associated with the holes (such as the hole-hole correlation and the electron momentum distribution function) are very different between the d_{x^2-y^2} and p states, while their spin properties are very similar. Finally, we demonstrate that by adding ``realistic'' terms to the t-J model Hamiltonian, we can easily destroy the d_{x^2-y^2} ground state. This casts doubt on the robustness of the d_{x^2-y^2} state as the ground state in a microscopic model for the high temperature superconductors
    corecore