98 research outputs found

    A Review of Error Resilience Techniques in Video Streaming

    Get PDF
    Abstract-Delivering video data of satisfactory quality over unreliable networks -such as the internet or wireless networks -is a demanding area which has received significant attention of the research community over the past few years. Given the fact that packet loss is inevitable and therefore the presence of errors granted, the effort is directed towards limiting the effect of these errors. A number of techniques have been developed to address this issue. This paper aims to summarize the most significant approaches for: error resilience, error concealment and joint encoder-decoder error control techniques, and to provide a thorough discussion of the benefits and drawbacks of these error control methods. Furthermore, two case studies of error resilience utilization are presented, namely Ad-hoc networks and Multimedia Broadcast Multiple Services (MBMS)

    Fast Localization of Optic Disc and Fovea in Retinal Images for Eye Disease Screening

    Get PDF
    ABSTRACT Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images

    Carotid Ultrasound Boundary Study (CUBS): An Open Multicenter Analysis of Computerized Intima–Media Thickness Measurement Systems and Their Clinical Impact

    Get PDF
    Common carotid intima–media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analysts’ manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplan–Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.1

    Virtual reality reusable e-resources for clinical skills training: a mixed-methods evaluation

    Get PDF
    Virtual reality has long existed, but its wider adoption in education is recent. Studies informed by theoretical underpinned co-creation frameworks and utilization of theoretical informed evaluations are scarce in literature. Thus, this study internationally evaluated the efficacy of three virtual reality reusable e-resources (VRReRs), co-created based on the ASPIRE framework, for teaching clinical skills to university students. The study followed a mixed-methods approach, combining SUS, SUS Presence Questionnaire, TAM, and UTAUT2 with a focus group discussion. Additionally, for one VRReR, a quantitative pre/post evaluation of knowledge and comparison with lecture notes followed. Results demonstrated moderately to highly usability, effectively facilitated a strong sense of presence, confidence while using them, and willingness to continue using VRReRs in the future, while increased knowledge of the learners, highlighted their effectiveness. Although some usability issues were identified, these were considered easy to address. This work evidence, in an international context, that co-created VR resources are highly acceptable and effective, similar to other types of digital or traditional resources developed through participatory inquiry paradigm. By leveraging the benefits of VR technology, VRReRs have the potential to transform and enhance the learning experience in the field of clinical skills, ultimately advancing the digitalization of higher education

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    The Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF

    m-Health e-Emergency Systems: Current Status and Future Directions

    No full text
    Abstract- Rapid advances in wireless communications and networking technologies, linked with advances in computing and medical technologies facilitate the development and offering of emerging mobile systems and services in the healthcare sector. The objective of this paper is to provide an overview of the current status and challenges of mobile health systems (m-health) in emergency healthcare systems and services (eemergency). The paper covers a review of recent e-emergency systems, including the wireless technologies used, as well as the data transmitted (electronic patient record, biosignals, medical images and video, subject video, and other). Furthermore, emerging wireless video systems for reliable communications in these applications are presented. We anticipate that m-health e-emergency systems will significantly affect the delivery of healthcare; however, their exploitation in daily practice still remains to be achieved

    Wireless telemedicine systems: an overview

    No full text
    Rapid advances in information technology and telecommunications - and, more specifically, wireless and mobile communications - and their convergence ("telematics") are leading to the emergence of a new type of information infrastructure that has the potential of supporting an array of advanced services for healthcare. The objective of this paper is to provide a snapshot of the applications of wireless telemedicine systems. A review of the spectrum of these applications and the potential benefits of these efforts is presented, followed by successful case studies in electronic patient record, emergency telemedicine, teleradiology, and home monitoring. It is anticipated that the progress carried out in these efforts and the potential benefits of emerging mobile technologies will trigger the development of more applications, thus enabling the offering of a better service to the citizen

    Mobile health systems: A brief overview

    No full text
    Rapid advances in information technology and telecommunications, and more specifically wireless and mobile communications, and their convergence (telematics) are leading to the emergence of a new type of information infrastructure that has the potential of supporting an array of advanced services for healthcare. The objective of this paper is to provide a snapshot of the applications of mobile technology in healthcare. A brief review of the spectrum of these applications and the potential benefits of these efforts will be presented, followed by success case studies in electronic patient record, emergency telemedicine, teleradiology, and home monitoring. It is anticipated that the progress carried out in these efforts, and the potential benefits of emerging mobile technologies will trigger the development of more applications, thus enabling the offering of a better service to the citizen
    corecore