26 research outputs found

    Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium

    Get PDF
    The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods

    The BioGRID Interaction Database: 2011 update

    Get PDF
    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions

    Saccharomyces Genome Database provides mutant phenotype data

    Get PDF
    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as bakerā€™s or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD

    Gene Ontology annotations at SGD: new data sources and annotation methods

    Get PDF
    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current

    The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

    Get PDF
    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools

    The Gene Ontology: enhancements for 2011

    Get PDF
    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources

    Randomized phase II clinical trial of adriamycin, methotrexate, and actinomycin-D in advanced measurable pancreatic carcinoma: a Gastrointestinal Tumor Study Group Report

    No full text
    Sixty-six patients with advanced pancreatic carcinoma were randomized to receive single agent chemotherapy with either adriamycin, methotrexate, or actinomycin-D using conventional dose, route and schedule of administration. All patients had measurable lesions which were used to objective assessment of response. For adriamycin, 2 of 25 patients (8%) evidenced a partial response (2 of 15 (13%) previously untreated patients). One of 25 patients treated with methotrexate and one of 28 received actinomycin-D responded. The duration of responses ranged from 43-64 days for those patients with no chemotherapy prior to study entry. The median survival of patients who received adriamycin as initial treatment was 12 weeks compared to 8 weeks for methotrexate and 6 weeks for actinomycin-D therapy

    Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions

    No full text
    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set
    corecore