4,098 research outputs found

    Some generic properties of level spacing distributions of 2D real random matrices

    Full text link
    We study the level spacing distribution P(S)P(S) of 2D real random matrices both symmetric as well as general, non-symmetric. In the general case we restrict ourselves to Gaussian distributed matrix elements, but different widths of the various matrix elements are admitted. The following results are obtained: An explicit exact formula for P(S)P(S) is derived and its behaviour close to S=0 is studied analytically, showing that there is linear level repulsion, unless there are additional constraints for the probability distribution of the matrix elements. The constraint of having only positive or only negative but otherwise arbitrary non-diagonal elements leads to quadratic level repulsion with logarithmic corrections. These findings detail and extend our previous results already published in a preceding paper. For the {\em symmetric} real 2D matrices also other, non-Gaussian statistical distributions are considered. In this case we show for arbitrary statistical distribution of the diagonal and non-diagonal elements that the level repulsion exponent ρ\rho is always ρ=1\rho = 1, provided the distribution function of the matrix elements is regular at zero value. If the distribution function of the matrix elements is a singular (but still integrable) power law near zero value of SS, the level spacing distribution P(S)P(S) is a fractional exponent pawer law at small SS. The tail of P(S)P(S) depends on further details of the matrix element statistics. We explicitly work out four cases: the constant (box) distribution, the Cauchy-Lorentz distribution, the exponential distribution and, as an example for a singular distribution, the power law distribution for P(S)P(S) near zero value times an exponential tail.Comment: 21 pages, no figures, submitted to Zeitschrift fuer Naturforschung

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur

    Extended phase diagram of the Lorenz model

    Get PDF
    The parameter dependence of the various attractive solutions of the three variable nonlinear Lorenz model equations for thermal convection in Rayleigh-B\'enard flow is studied. Its bifurcation structure has commonly been investigated as a function of r, the normalized Rayleigh number, at fixed Prandtl number \sigma. The present work extends the analysis to the entire (r,\sigma) parameter plane. An onion like periodic pattern is found which is due to the alternating stability of symmetric and non-symmetric periodic orbits. This periodic pattern is explained by considering non-trivial limits of large r and \sigma. In addition to the limit which was previously analyzed by Sparrow, we identify two more distinct asymptotic regimes in which either \sigma/r or \sigma^2/r is constant. In both limits the dynamics is approximately described by Airy functions whence the periodicity in parameter space can be calculated analytically. Furthermore, some observations about sequences of bifurcations and coexistence of attractors, periodic as well as chaotic, are reported.Comment: 36 pages, 20 figure

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)Ed1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de

    Finite size corrections to scaling in high Reynolds number turbulence

    Get PDF
    We study analytically and numerically the corrections to scaling in turbulence which arise due to the finite ratio of the outer scale LL of turbulence to the viscous scale η\eta, i.e., they are due to finite size effects as anisotropic forcing or boundary conditions at large scales. We find that the deviations \dzm from the classical Kolmogorov scaling ζm=m/3\zeta_m = m/3 of the velocity moments \langle |\u(\k)|^m\rangle \propto k^{-\zeta_m} decrease like δζm(Re)=cmRe3/10\delta\zeta_m (Re) =c_m Re^{-3/10}. Our numerics employ a reduced wave vector set approximation for which the small scale structures are not fully resolved. Within this approximation we do not find ReRe independent anomalous scaling within the inertial subrange. If anomalous scaling in the inertial subrange can be verified in the large ReRe limit, this supports the suggestion that small scale structures should be responsible, originating from viscosity either in the bulk (vortex tubes or sheets) or from the boundary layers (plumes or swirls)

    Yang-Lee zeroes for an urn model for the separation of sand

    Full text link
    We apply the Yang-Lee theory of phase transitions to an urn model of separation of sand. The effective partition function of this nonequilibrium system can be expressed as a polynomial of the size-dependent effective fugacity zz. Numerical calculations show that in the thermodynamic limit, the zeros of the effective partition function are located on the unit circle in the complex zz-plane. In the complex plane of the actual control parameter certain roots converge to the transition point of the model. Thus the Yang-Lee theory can be applied to a wider class of nonequilibrium systems than those considered previously.Comment: 4 pages, 3 eps figures include

    First Order Phase Transition in a Reaction-Diffusion Model With Open Boundary: The Yang-Lee Theory Approach

    Full text link
    A coagulation-decoagulation model is introduced on a chain of length L with open boundary. The model consists of one species of particles which diffuse, coagulate and decoagulate preferentially in the leftward direction. They are also injected and extracted from the left boundary with different rates. We will show that on a specific plane in the space of parameters, the steady state weights can be calculated exactly using a matrix product method. The model exhibits a first-order phase transition between a low-density and a high-density phase. The density profile of the particles in each phase is obtained both analytically and using the Monte Carlo Simulation. The two-point density-density correlation function in each phase has also been calculated. By applying the Yang-Lee theory we can predict the same phase diagram for the model. This model is further evidence for the applicability of the Yang-Lee theory in the non-equilibrium statistical mechanics context.Comment: 10 Pages, 3 Figures, To appear in Journal of Physics A: Mathematical and Genera

    Developed turbulence: From full simulations to full mode reductions

    Get PDF
    Developed Navier-Stokes turbulence is simulated with varying wavevector mode reductions. The flatness and the skewness of the velocity derivative depend on the degree of mode reduction. They show a crossover towards the value of the full numerical simulation when the viscous subrange starts to be resolved. The intermittency corrections of the scaling exponents of the pth order velocity structure functions seem to depend mainly on the proper resolution of the inertial subrange. Universal scaling properties (i.e., independent of the degree of mode reduction) are found for the relative scaling exponents rho which were recently defined by Benzi et al.Comment: 4 pages, 5 eps-figures, replaces version from August 5th, 199

    Aging and intermittency in a p-spin model of a glass

    Full text link
    We numerically analyze the statistics of the heat flow between an aging system and its thermal bath, following a method proposed and tested for a spin-glass model in a recent Letter (P. Sibani and H.J. Jensen, Europhys. Lett.69, 563 (2005)). The present system, which lacks quenched randomness, consists of Ising spins located on a cubic lattice, with each plaquette contributing to the total energy the product of the four spins located at its corners. Similarly to our previous findings, energy leaves the system in rare but large, so called intermittent, bursts which are embedded in reversible and equilibrium-like fluctuations of zero average. The intermittent bursts, or quakes, dissipate the excess energy trapped in the initial state at a rate which falls off with the inverse of the age. This strongly heterogeneous dynamical picture is explained using the idea that quakes are triggered by energy fluctuations of record size, which occur independently within a number of thermalized domains. From the temperature dependence of the width of the reversible heat fluctuations we surmise that these domains have an exponential density of states. Finally, we show that the heat flow consists of a temperature independent term and a term with an Arrhenius temperature dependence. Microscopic dynamical and structural information can thus be extracted from numerical intermittency data. This type of analysis seems now within the reach of time resolved micro-calorimetry techniques.Comment: 9 pages, 6 figures, europhysics letter style, to appear in Physical Review
    corecore