15,759 research outputs found

    The art of being human : a project for general philosophy of science

    Get PDF
    Throughout the medieval and modern periods, in various sacred and secular guises, the unification of all forms of knowledge under the rubric of ‘science’ has been taken as the prerogative of humanity as a species. However, as our sense of species privilege has been called increasingly into question, so too has the very salience of ‘humanity’ and ‘science’ as general categories, let alone ones that might bear some essential relationship to each other. After showing how the ascendant Stanford School in the philosophy of science has contributed to this joint demystification of ‘humanity’ and ‘science’, I proceed on a more positive note to a conceptual framework for making sense of science as the art of being human. My understanding of ‘science’ is indebted to the red thread that runs from Christian theology through the Scientific Revolution and Enlightenment to the Humboldtian revival of the university as the site for the synthesis of knowledge as the culmination of self-development. Especially salient to this idea is science‘s epistemic capacity to manage modality (i.e. to determine the conditions under which possibilities can be actualised) and its political capacity to organize humanity into projects of universal concern. However, the challenge facing such an ideal in the twentyfirst century is that the predicate ‘human’ may be projected in three quite distinct ways, governed by what I call ‘ecological’, ‘biomedical’ and ‘cybernetic’ interests. Which one of these future humanities would claim today’s humans as proper ancestors and could these futures co-habit the same world thus become two important questions that general philosophy of science will need to address in the coming years

    The genealogy of judgement: towards a deep history of academic freedom

    Get PDF
    The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion

    Artificial Seed Production from Encapsulated Microshoots of Cauliflower (Brassica oleraceae var botrytis)

    Get PDF
    A cost effective protocol for the production of cauliflower microshoots suitable for encapsulation was designed. Microshoots were encapsulated in sodium chloride matrices. The use of 2% of sodium alginate and 15 g/L of dehydrate calcium chloride produced the optimal quality of artificial seeds (rigidity, conversion rate and viability). Of the various plant growth regulator combinations used with the microshoot liquid culture medium, the use of 1 mg/L of IBA (indole butyric acid) and 1 mg/L Kinetin was found to be optimal in terms of the conversion rate and viability of artificial seeds. To standardize a medium composition of artificial endosperm of synthetic seeds, different concentrations and combinations of plant growth regulators with S23 (4.4 MS + 30 g/L sucrose) medium were used in the beads to achieve optimum conversion rate and viability on an in-vitro medium. Whilst several combinations of plant growth regulators gave a conversion rate up to 100% (for example (0.5 mg/L Kinetin + 0.5 mg/L IBA), (1 mg/L Kinetin + 0.5 mg/L NAA (naphthaleneacetic acid)) and (1 mg/L Kinetin + 1 mg/L IAA (indole-3-acetic acid)), no significant effect on the viability of artificial seeds was found when these combinations were used. Artificial seeds were cultivated in a semi-solid medium containing several types and concentrations of auxin, 2 mg/L of IBA gave the best results in terms of artificial seed viability. However, artificial seed conversion rate was not significantly affected by the auxins and full conversion rate was obtained using many different treatments. This research indicated the feasibility of using artificial seeds as a promising alternative to seeds produced by traditional methodology

    Neutrino Capture and r-Process Nucleosynthesis

    Get PDF
    We explore neutrino capture during r-process nucleosynthesis in neutrino-driven ejecta from nascent neutron stars. We focus on the interplay between charged-current weak interactions and element synthesis, and we delineate the important role of equilibrium nuclear dynamics. During the period of coexistence of free nucleons and light and/or heavy nuclei, electron neutrino capture inhibits the r-process. At all stages, capture on free neutrons has a larger impact than capture on nuclei. However, neutrino capture on heavey nuclei by itself, if it is very strong, is also detrimental to the r-process until large nuclear equilibrium clusters break down and the classical neutron-capture phase of the r-process begins. The sensitivity of the r-process to neutrino irradiation means that neutrino-capture effects can strongly constrain the r-process site, neutrino physics, or both. These results apply also to r-process scenarios other than neutrino-heated winds.Comment: 20 pages, 17 figures, Submitted to Physical Review

    Encapsulation of cauliflower (Brassica oleracea var botrytis) microshoots as artificial seeds and their conversion and growth in commercial substrates

    Get PDF
    An effective protocol for the mass production of cauliflower microshoots was refined using the meristematic layer of cauliflower curd. After the meristematic layer was surface sterilized and shaved off, a commercial blender was used for homogenization and several blending treatments were tested in the range 15-120 s and 30 s was found to be optimal in terms of the amount explants produced and their subsequent growth ability. Explants were cultivated in S23 liquid medium (4.4 g L-1 MS (Murashige and Skoog) and 3% v/w sucrose) supplemented with several combinations of plant growth regulators (PGRs) including 1 and 2 mg L-1 of Kinetin in combination with three types of auxins (indole butyric acid (IBA), Naphthaleneacetic acid (NAA) and Indole-3-acetic acid (IAA)), each at 1 and 2 mg L-1 concentration. The use of 2 mg L-1 Kinetin and 1 mg L-1 IBA gave the best results in terms of its effects on explant induction. Microshoots of different sizes were encapsulated in a sodium alginate matrix and the optimal stage suitable for the production of artificial seeds was assessed in terms of both subsequent conversion and plantlet viability. The feasibility of cultivating cauliflower artificial seeds in commercial substrates (compost, vermiculite, perlite and sand) irrigated with different solution mixtures including sterilized distilled water (SDW), PGRs-free S23 medium and S23 medium supplemented with Kinetin (1 and 2 mg L-1) and IBA or NAA at (1 and 2 mg L-1) was investigated. The use of 2 mg L-1 Kinetin and 2 mg L-1 NAA applied with S23 gave the optimal response with both perlite and compost. This study showed high growth capacity of cauliflower artificial seeds in commercial substrates which is considered a promising step for their direct use in vivo. © 2011 Springer Science+Business Media B.V

    Neutrino-Neutrino Scattering and Matter-Enhanced Neutrino Flavor Transformation in Supernovae

    Get PDF
    We examine matter-enhanced neutrino flavor transformation (ντ(μ)νe\nu_{\tau(\mu)}\rightleftharpoons\nu_e) in the region above the neutrino sphere in Type II supernovae. Our treatment explicitly includes contributions to the neutrino-propagation Hamiltonian from neutrino-neutrino forward scattering. A proper inclusion of these contributions shows that they have a completely negligible effect on the range of νe\nu_e-ντ(μ)\nu_{\tau(\mu)} vacuum mass-squared difference, δm2\delta m^2, and vacuum mixing angle, θ\theta, or equivalently sin22θ\sin^22\theta, required for enhanced supernova shock re-heating. When neutrino background effects are included, we find that rr-process nucleosynthesis from neutrino-heated supernova ejecta remains a sensitive probe of the mixing between a light νe\nu_e and a ντ(μ)\nu_{\tau(\mu)} with a cosmologically significant mass. Neutrino-neutrino scattering contributions are found to have a generally small effect on the (δm2, sin22θ)(\delta m^2,\ \sin^22\theta) parameter region probed by rr-process nucleosynthesis. We point out that the nonlinear effects of the neutrino background extend the range of sensitivity of rr-process nucleosynthesis to smaller values of δm2\delta m^2.Comment: 38 pages, tex, DOE/ER/40561-150-INT94-00-6

    Presupernova collapse models with improved weak-interaction rates

    Get PDF
    Improved values for stellar weak interaction rates have been recently calculated based upon a large shell model diagonalization. Using these new rates (for both beta decay and electron capture), we have examined the presupernova evolution of massive stars in the range 15-40 Msun. Comparing our new models with a standard set of presupernova models by Woosley and Weaver, we find significantly larger values for the electron-to-baryon ratio Ye at the onset of collapse and iron core masses reduced by approximately 0.1 Msun. The inclusion of beta-decay accounts for roughly half of the revisions, while the other half is a consequence of the improved nuclear physics. These changes will have important consequences for nucleosynthesis and the supernova explosion mechanism.Comment: 4 pages, 2 figure

    The effects of day and night temperature on Chrysanthemum morifolium: investigating the safe limits for temperature integration

    Get PDF
    The impact of day and night temperatures on pot chrysanthemum (cultivars ‘Covington’ and ‘Irvine’) was assessed by exposing cuttings, stuck in weeks 39, 44, and 49, to different temperature regimes in short-days. Glasshouse heating setpoints of 12°, 15°, 18°, and 21°C, were used during the day, with venting at 2°C above these set-points. Night temperatures were then automatically manipulated to ensure that all of the treatments achieved similar mean diurnal temperatures. Plants were grown according to commercial practice and the experiment was repeated over 2 years. Increasing the day temperature from approx. 19°C to 21°C, and compensating by reducing the night temperature, did not have a significant impact on flowering time, although plant height was increased.This suggests that a temperature integration strategy which involves higher vent temperatures, and exploiting solar gain to give higher than normal day temperatures, should have minimal impact on crop scheduling. However, lowering the day-time temperature to approx. 16°C, and compensating with a warmer night, delayed flowering by up to 2 weeks. Therefore, a strategy whereby, in Winter, more heat is added at night under a thermally-efficient blackout screen may result in flowering delays.Transfers between the temperature regimes showed that the flowering delays were proportional to the amount of time spent in a low day-time temperature regime. Plants flowered at the same time, irrespective of whether they were transferred on a 1-, 2-, or 4-week cycle

    Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat.

    Get PDF
    Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages

    Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions

    Full text link
    We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.Comment: 9 pages, 5 figure
    corecore