1,792 research outputs found
Narasimham Committee Report - Some Further Ramifications and Suggestions
This paper while agreeing with the general thrust of the Narasimham Committee Report. Calls attention to some logical corollaries of the Report and analyses some possible fallout from implementing the Report. We agree with the view that control of banking system should be under an autonomous body supervised by the RBI. However at the level of individual banks, closer scrutiny of lending procedures may be called for than is envisaged in the Report. In a freely functioning capital market the potential of government bonds is enormous, but this necessitates restructuring of the government bond market. The government bonds may then also be used as suitable hedging mechanisms by introducing options and futures trading. We recommend freeing up the operation of pension and provident fund to enable at least partial investment of such funds in risky securities. In the corporate sector, we believe that the current 2:1 debt equity norm is too high and not sustainable in the long term. We envisage that high debt levels and higher interest rates, combined with higher business risk may result in greater incidence of corporate sickness. This may call for various schemes for retrenched workers and amendment to land laws for easy exit of companies. On account of interdependencies across different policies, any sequencing of their implementation may be highly problematic. We therefore suggest a near simultaneity in the implementation of various reforms in order to build up a momentum which would be irreversible if people are to have confidence that the reforms will endure, and if we are to retain our credibility with international financial institutions.
Modeling of secondary organic aerosol yields from laboratory chamber data
Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA) formation. Current models fall into three categories: empirical two-product (Odum), product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs) classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice
Recommended from our members
Practically Useful Models for Kinetics of Biodiesel Production
© 2019 American Chemical Society. We develop four kinetic models of varying complexity for biodiesel production. The models incorporate both transesterification and saponification, thereby making them practically applicable. We then propose an iterative parameter estimation algorithm to identify a prefixed number of significant rate constants via sensitivity analysis and estimate their kinetic parameters (A and ΔE) using nonlinear regression. Using experimental data on eight different oils, two alcohols, and two catalysts, we show that our models accurately predict the dynamic concentration profiles of various species during the transesterification of oil. Furthermore, we demonstrate the applicability of the best model (based on the values of Mean Absolute Error, Root Mean Square Error, and Akaike Information Criterion) for 11 additional experiments by predicting the final biodiesel properties with significant accuracy. Finally, using N-way ANOVA, we identify the choice of oil, alcohol, and catalyst as the most significant input factors followed by the operating conditions of the reactor
Changes in organic aerosol composition with aging inferred from aerosol mass spectra
Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f_(43)(ratio of m/z 43, mostly C_2H_3O^+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f_(44) (mostly CO^+_2, likely from acid groups) vs. f_(43) space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f_(44) of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ −0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies
Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation
The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal-driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models
Malignancy and all-cause mortality; incidence in adolescents and young adults living with perinatally acquired HIV.
Background: Adults living with HIV have an increased risk of malignancy yet there is a paucity of data for adolescents and young adults (AYA) with perinatally acquired HIV (PaHIV). Methods: Retrospective cohort analysis of all-cause mortality and malignancies in AYA with PaHIV aged 10-24 years attending a tertiary unit from 01 January 2004 to 31 December 2017, assessing cancer presentation, immunology and comparing mortality and malignancy incidence to age-matched UK general population rates. Results: A total of 290 AYA with PaHIV contributed 2644 person-years of follow up. Six (2.0%) died within the study period at a median age of 17 years (interquartile range [IQR]15-19), 3 of malignancy, 2 with end-stage HIV and 1 with cryptococcal meningitis. Overall mortality rate was 2.3/1000 person-years, with an age-matched general population rate of 0.2/1000 person-years. Eight (2.8%) were diagnosed with a malignancy; 6 with lymphoma (n=3 Hodgkin's, n=1 Burkitt's, n=2 B-cell) and one each with hepatocellular carcinoma and gastrointestinal adenocarcinoma. At cancer diagnosis the median age was 19 years (IQR 14-23), median CD4 T cell count was 453 cells/mm3 (IQR 231-645) and median length of HIV viremia was 15 years (IQR 12-17). The incidence rate of a malignancy was 3.0/1000 person-years in AYA with PaHIV, whilst that in the age-matched general population is 0.2/1000 person-years. Conclusion: AYA living with PaHIV had an increased risk of all-cause mortality and of malignancy compared to their uninfected peers, with the excess in malignancy driven by lymphomas. It is hoped that earlier access to antiretroviral therapy will mitigate some of the AIDS-defining and non-AIDS defining risks for future generations
Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions
Chamber studies of glyoxal uptake onto ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions. Glyoxal monomers and oligomers were the dominant organic compounds formed under the conditions of this study; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. We have identified 1H-imidazole-2-carboxaldehyde as one C-N product. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active photochemistry was found to occur within aerosol during irradiated experiments. Carboxylic acids and organic esters were identified within the aerosol. An organosulphate, which had been previously assigned as glyoxal sulphate in ambient samples and chamber studies of isoprene oxidation, was observed only in the irradiated experiments. Comparison with a laboratory synthesized standard and chemical considerations strongly suggest that this organosulphate is glycolic acid sulphate, an isomer of the previously proposed glyoxal sulphate. Our study shows that reversibility of glyoxal uptake should be taken into account in SOA models and also demonstrates the need for further investigation of C-N compound formation and photochemical processes, in particular organosulphate formation
Order preserving pattern matching on trees and DAGs
The order preserving pattern matching (OPPM) problem is, given a pattern
string and a text string , find all substrings of which have the
same relative orders as . In this paper, we consider two variants of the
OPPM problem where a set of text strings is given as a tree or a DAG. We show
that the OPPM problem for a single pattern of length and a text tree
of size can be solved in time if the characters of are
drawn from an integer alphabet of polynomial size. The time complexity becomes
if the pattern is over a general ordered alphabet. We
then show that the OPPM problem for a single pattern and a text DAG is
NP-complete
- …