55 research outputs found

    Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV

    Full text link
    Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, South Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.Comment: 11 pages, 6 figures. IOP Institute of Physics Conference Nuclear Physics in Astrophysics VII, 28th EPF Nuclear Physics Divisional Conference, May 18-22 2015, York, U

    Novel correlations between spectroscopic and morphological properties of activated carbons from waste coffee grounds

    Get PDF
    Massive quantities of spent coffee grounds (SCGs) are generated by users around the world. Different processes have been proposed for SCG valorization, including pyrolytic processes to achieve carbonaceous materials. Here, we report the preparation of activated carbons through pyrolytic processes carried out under different experimental conditions and in the presence of various porosity activators. Textural and chemical characterization of the obtained carbons have been achieved through Brunauer–Emmett–Teller (BET), ESEM,13C solid state NMR, XPS, XRD, thermogravimetric and spectroscopic determinations. The aim of the paper is to relate these data to the preparation method, evaluating the correlation between the spectroscopic data and the physical and textural properties, also in comparison with the corresponding data obtained for three commercial activated carbons used in industrial adsorption processes. Some correlations have been observed between the Raman and XPS data

    Measurement and analysis of nuclear γ-ray production cross sections in proton interactions with Mg, Si, and Fe nuclei abundant in astrophysical sites over the incident energy range E = 30–66 MeV

    Get PDF
    The modeling of nuclear γ -ray line emission induced by highly accelerated particles in astrophysical sites (e.g., solar flares, the gas and dust in the inner galaxy) and the comparison with observed emissions from these sites needs a comprehensive database of related production cross sections. The most important reactions of protons and α particles are those with abundant target elements like C, O, N, Ne, Mg, Si, and Fe at projectile energies extending from the reaction threshold to a few hundred MeV per nucleon. In this work, we have measured γ -ray production cross section excitation functions for 30, 42, 54, and 66 MeV proton beams accelerated onto nat C , C + O (Mylar), nat Mg , nat Si , and 56 Fe targets of astrophysical interest at the Separated Sector Cyclotron (SSC) of iThemba LABS (near Cape Town, South Africa). The AFRODITE array equipped with eight Compton suppressed high-purity (HPGe) clover detectors was used to record γ -ray line energy spectra. For known, intense lines previously reported experimental data measured up to E p ≃ 25 MeV at the Washington and Orsay tandem accelerators were thus extended to higher proton energies. Our experimental data for the last three targets are reported here and discussed with respect to previous data and to the Murphy et al. compilation [Astrophys. J. Suppl. Ser. 183, 142 (2009)]

    A Novel Quantitative Evaluation Metric of 3D Mesh Segmentation

    No full text

    Longitudinal and Integrative Biomodeling of Effector and Memory Immune Compartments after Inactivated Influenza Vaccination

    No full text
    International audienceMost vaccines, including those against influenza, were developed by focusing solely on humoral response for protection. However, vaccination activates different adaptive compartments that might play a role in protection. We took advantage of the pandemic 2009 A(H1N1) influenza vaccination to conduct a longitudinal integrative multiparametric analysis of seven immune parameters in vaccinated subjects. A global analysis underlined the predominance of induction of humoral and CD4 T cell responses, whereas pandemic 2009 A(H1N1)-specific CD8 responses did not improve after vaccination. A principal component analysis and hierarchical clustering of individuals showed a differential upregulation of influenza vaccine-specific immunity including hemagglutination inhibition titers, IgA+^+ and IgG+^+ Ab-secreting cells, effector CD4 or CD8 T cell frequencies at day 21 among individuals, suggesting a fine-tuning of the immune parameters after vaccination. This is related to individual factors including the magnitude and quality of influenza-specific immune responses before vaccination. We propose a graphical delineation of immune determinants that would be essential for a better understanding of vaccine-induced immunity in vaccination strategie

    Measurements of nuclear γ\gamma-ray line emission in interactions of protons and α\alpha particles with N, O, Ne and Si.

    No full text
    42 pages, 12 figures, 7 tables, submitted to Phys. Rev. CInternational audienceγ\gamma-ray production cross sections have been measured in proton irradiations of N, Ne and Si and α\alpha-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong γ\gamma-ray lines of 16^{16}O produced in proton and α\alpha-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for α\alpha-particles have been delivered by the IPN-Orsay tandem accelerator. The γ\gamma rays have been detected with four HP-Ge detectors in the angular range 30^{\circ} to 135^{\circ}. We extracted 36 cross section excitation functions for proton reactions and 14 for α\alpha-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible usually a very good agreement was found. It is shown that these data are very interesting for constraining nuclear reaction models. In particular the agreement of cross section calculations in the nuclear reaction code TALYS with the measured data could be improved by adjusting the coupling schemes of collective levels in the target nuclei 14^{14}N, 20,22^{20,22}Ne and 28^{28}Si. The importance of these results for the modeling of nuclear γ\gamma-ray line emission in astrophysical sites is discussed
    corecore