601 research outputs found

    The value of migration information for conservation prioritization of sea turtles in the Mediterranean

    Get PDF
    Aim: Conservation plans often struggle to account for connectivity in spatial prioritization approaches for the protection of migratory species. Protection of such species is challenging because their movements may be uncertain and variable, span vast distances, cross international borders and traverse land and sea habitats. Often we are faced with small samples of information from various sources and the collection of additional data can be costly and time-consuming. Therefore it is important to evaluate what degree of spatial information provides sufficient results for directing management actions. Here we develop and evaluate an approach that incorporates habitat and movement information to advance the conservation of migratory species. We test our approach using information on threatened loggerhead sea turtles (Caretta caretta) in the Mediterranean. Location: The Mediterranean Sea. Methods: We use Marxan, a spatially explicit decision support tool, to select priority conservation areas. Four approaches with increasing amounts of information about the loggerhead sea turtle are compared, ranging from (1) the broad distribution, (2) multiple habitat types that represent foraging, nesting and inter-nesting habitats, (3) mark-recapture movement information to (4) telemetry-derived migration tracks. Results: We find that spatial priorities for sea turtle conservation are sensitive to the information used in the prioritization process. Setting conservation targets for migration tracks altered the location of conservation priorities, indicating that conservation plans designed without such data would miss important sea turtle habitat. We discover that even a small number of tracks make a significant contribution to a spatial conservation plan if those tracks are substantially different. Main conclusions: This study presents a novel approach to improving spatial prioritization for conserving migratory species. We propose that future telemetry studies tailor their efforts towards conservation prioritization needs, meaning that spatially dispersed samples rather than just large numbers should be obtained. This work highlights the valuable information that telemetry research contributes to the conservation of migratory species

    Spatially explicit approach to estimation of total population abundance in field surveys.

    Get PDF
    Population abundance is fundamental in ecology and conservation biology, and provides essential information for predicting population dynamics and implementing conservation actions. While a range of approaches have been proposed to estimate population abundance based on existing data, data deficiency is ubiquitous. When information is deficient, a population estimation will rely on labor intensive field surveys. Typically, time is one of the critical constraints in conservation, and management decisions must often be made quickly under a data deficient situation. Hence, it is important to acquire a theoretical justification for survey methods to meet a required estimation precision. There is no such theory available in a spatially explicit context, while spatial considerations are critical to any field survey. Here, we develop a spatially explicit theory for population estimation that allows us to examine the estimation precision under different survey designs and individual distribution patterns (e.g. random/clustered sampling and individual distribution). We demonstrate that clustered sampling decreases the estimation precision when individuals form clusters, while sampling designs do not affect the estimation accuracy when individuals are distributed randomly. Regardless of individual distribution, the estimation precision becomes higher with increasing total population abundance and the sampled fraction. These insights provide theoretical bases for efficient field survey designs in information deficiency situations

    Endoscopic vacuum therapy for in- and outpatient treatment of colorectal defects

    Get PDF
    Background. Evidence for endoscopic vacuum therapy (EVT) for colorectal defects is still based on small patient series from various institutions, employing different treatment algorithms and methods. As EVT was invented at our institution 20 years ago, the aim was to report the efficacy and safety of EVT for colorectal defects as well as to analyze factors associated with efficacy, therapy duration, and outpatient treatment. Methods. Cohort study with analysis of prospectively collected data of patients receiving EVT for colorectal defects at a tertiary referral center in Germany (n=281). Results. The majority of patients had malignant disease (83%) and an American Society of Anesthesiologists classification of III/IV (81%). Most frequent indications for EVT were anastomotic leakage after sigmoid or rectal resection (67%) followed by rectal stump leakage (20%). EVT was successful in 256 out of 281 patients (91%). EVT following multi-visceral resection (P = 0.037) and recent surgical revision after primary surgery (P = 0.009) were risk factors for EVT failure. EVT-associated adverse events occurred in 27 patients (10%). Median treatment duration was 25 days. Previous chemo-radiation (P = 0.006) was associated with a significant longer duration of EVT. Outpatient treatment was conducted in 49% of patients with a median hospital stay reduction of 15 days and 98% treatment success. Younger patient age (P = 0.044) was associated with the possibility of outpatient treatment. Restoration of intestinal continuity was achieved in 60% of patients where technically possible with a 12-month rate of 52%. Conclusions. In patients with colorectal defects, EVT appears to be a safe and effective, minimally invasive option for in- and outpatient treatment

    Incorporating feasibility and collaboration into large-scale planning for regional recovery of coral reef fisheries

    Get PDF
    Broad-scale overharvesting of fish is one of the major drivers of marine biodiversity loss and poverty, particularly in countries with high dependence on coral reefs. Given the heterogeneity of fishing effort and management success, and the scarcity of management resources, it is necessary to identify broad-scale locations for promoting successful fisheries management and conservation. Here, we assessed how fisheries management and conservation priorities in the Western Indian Ocean would change if the objectives were to (1) minimize lost fishing opportunity, (2) minimize the time for fish biomass to recover, (3) avoid locations of low management feasibility based on historical management outcomes, and (4) incorporate international collaboration to optimize the rate for achieving goals. When prioritizing for rapid recovery of fish biomass rather than minimizing lost fishing opportunity, we found that the area of priority management zones changed by over 60% in some countries. When locations of low management feasibility were avoided, the recovery time of fish biomass across the region increased 4-fold. International collaborations prioritized management zones in remote, high biomass, and low fishing pressure reefs and reduced the recovery time of fish 5-fold compared to non-collaboration scenarios. Thus, many of these conservation objectives favored wealthy and sparsely populated over poorer and natural resource dependent countries. Consequently, this study shows how prioritization policies, incentives, decisions, and conflicts will produce highly variable outcomes and challenges for sustainability

    Diversification of refugia types needed to secure the future of coral reefs subject to climate change

    Get PDF
    Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate

    Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions

    Get PDF
    There are several advantages of introducing adjoint superfields at intermediate energies around M=1013M=10^{13} GeV. Such as (i) gauge couplings still unify (ii) neutrino masses and mixings are produced (iii) primordial lepton asymmetry can be produced. We point out that if adjoint scalars have bulk excitations along with gauge bosons whereas fermions and the doublet scalar live on boundary then N=2 supersymmetric beta functions bi~\tilde{b_i} vanish. Thus even if extra dimensions open up at an intermediate scale μ0\mu_0 and all N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint representation propagate in the bulk, still gauge couplings renormalize beyond μ0\mu_0 just like they do in 4-dimensions with adjoint scalars. Consequently unification is achieved in the presence to extra dimensions, mass scales are determined uniquely via Renormalization Group Equations(RGE) and unification scale remains high enough to suppress proton decay. This scenario can be falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.

    Molecular ecology meets systematic conservation planning

    Get PDF
    Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the ‘why’) to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the ‘how’), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade
    • …
    corecore