233 research outputs found

    Search for the decay K+π+ννˉK^+\to \pi^+ \nu \bar\nu in the momentum region Pπ<195 MeV/cP_\pi < 195 {\rm ~MeV/c}

    Full text link
    We have searched for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar\nu in the kinematic region with pion momentum below the K+π+π0K^+ \to \pi^+ \pi^0 peak. One event was observed, consistent with the background estimate of 0.73±0.180.73\pm 0.18. This implies an upper limit on B(K+π+ννˉ)<4.2×109B(K^+ \to \pi^+ \nu \bar\nu)< 4.2\times 10^{-9} (90% C.L.), consistent with the recently measured branching ratio of (1.570.82+1.75)×1010(1.57^{+1.75}_{-0.82}) \times 10^{-10}, obtained using the standard model spectrum and the kinematic region above the K+π+π0K^+ \to \pi^+ \pi^0 peak. The same data were used to search for K+π+X0K^+ \to \pi^+ X^0, where X0X^0 is a weakly interacting neutral particle or system of particles with 150<MX0<250 MeV/c2150 < M_{X^0} < 250 {\rm ~MeV/c^2}.Comment: 4 pages, 2 figure

    RR-Parity Violation in Flavor Changing Neutral Current Processes and Top Quark Decays

    Get PDF
    We show that supersymmetric RR-parity breaking (̸Rp\not R_p) interactions always result in Flavor Changing Neutral Current (FCNC) processes. Within a single coupling scheme, these processes can be avoided in either the charge +2/3+2/3 or the charge 1/3-1/3 quark sector, but not both. These processes are used to place constraints on \Rp couplings. The constraints on the first and the second generations are better than those existing in the literature. The \Rp interactions may result in new top quark decays. Some of these violate electron-muon universality or produce a surplus of bb quark events in ttˉt\bar{t} decays. Results from the CDF experiment are used to bound these \Rp couplings.Comment: LaTeX, 20 pages, spelling corrected from origina

    Cosmological Bound on the Decay π0γX\pi^0\rightarrow\gamma X

    Full text link
    Using the upper bound on the effective number of light neutrino species during primordial nucleosynthesis and the cosmological pion-pole mechanism γγπ0γX\gamma\gamma\rightarrow \pi^0\rightarrow \gamma X, we obtain an upper limit on the branching ratio for the decay BR(π0γX)<3×1013(\pi^0\rightarrow \gamma X)<3\times 10^{-13}, where XX is any long-lived weakly interacting neutral vector particle with mass smaller than the neutral pion mass.Comment: 7 pages, IP-ASTP-03-9

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation

    The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing

    Get PDF
    We extend the range of predictions of the isosinglet (or vector) down quark model to the fully allowed physical ranges, and also update this with the effect of new physics constraints. We constrain the present allowed ranges of sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing mixing to a new isosinglet down quark (as in E_6) flavor changing neutral currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s, A_{B_s}) plots for the extra isosinglet down quark model which are herein extended to the full physical range, we find new allowed regions that will require experiments on sin(gamma) and/or x_s to verify or to rule out an extra down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure

    Further Evidence for the Decay K+ to pi+ neutrino-antineutrino

    Full text link
    Additional evidence for the rare kaon decay K+ to pi+ neutrino-antineutrino has been found in a new data set with comparable sensitivity to the previously reported result. One new event was observed in the pion momentum region examined, 211<P<229 MeV/c, bringing the total for the combined data set to two. Including all data taken, the backgrounds were estimated to contribute 0.15 pm 0.05 events. The branching ratio is B=1.57^{+1.75}_{-0.82} 10^{-10}.Comment: 10 pages, 2 figure

    Looking for CP Violation in W Production and Decay

    Full text link
    We describe CP violating observables in resonant W±W^\pm and W±W^\pm plus one jet production at the Tevatron. We present simple examples of CP violating effective operators, consistent with the symmetries of the Standard Model, which would give rise to these observables. We find that CP violating effects coming from new physics at the TeVTeV scale could in principle be observable at the Tevatron with 10610^6 W±W^\pm decays.Comment: 15 pgs with standard LATEX, 7 ps figures embedded with eps

    Fast, scalable, Bayesian spike identification for multi-electrode arrays

    Get PDF
    We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are scalable, that is, the computational cost of spike fitting should scale well with the number of units observed. Our algorithm accomplishes this goal, and is fast, because it exploits the spatial locality of each unit and the basic biophysics of extracellular signal propagation. Human intervention is minimized and streamlined via a graphical interface. We illustrate our method on data from a mammalian retina preparation and document its performance on simulated data consisting of spikes added to experimentally measured background noise. The algorithm is highly accurate
    corecore