359 research outputs found

    Non(anti)commutative SYM theory: Renormalization in superspace

    Full text link
    We present a systematic investigation of one-loop renormalizability for nonanticommutative N=1/2, U(N) SYM theory in superspace. We first discuss classical gauge invariance of the pure gauge theory and show that in contradistinction to the ordinary anticommutative case, different representations of supercovariant derivatives and field strengths do not lead to equivalent descriptions of the theory. Subsequently we develop background field methods which allow us to compute a manifestly covariant gauge effective action. One-loop evaluation of divergent contributions reveals that the theory simply obtained from the ordinary one by trading products for star products is not renormalizable. In the case of SYM with no matter we present a N=1/2 improved action which we show to be one-loop renormalizable and which is perfectly compatible with the algebraic structure of the star product. For this action we compute the beta functions. A brief discussion on the inclusion of chiral matter is also presented.Comment: Latex file, 59 pages, 10 figures, One reference adde

    Set-up and Calibration by Experimental Data of a Numerical Model for the Estimation of Solar Factor and Ug-value of Building Integrated Photovoltaic Systems☆

    Get PDF
    Abstract The acronym BIPV (Building Integrated Photovoltaics) refers to the installation of photovoltaic systems which, in addition to convert solar energy into electrical energy, have a high level of architectonical integration with the built environment, becoming a real architectural cladding to be installed over the buildings in place of traditional envelope systems. Many typologies of BIPV have been developed, however their thermal characteristics such as g and Ug-value are not well evaluated and require more detailed analyses considering that they could replace large extension of traditional building envelope. A first approach to address this problem is proposed in this work. A mathematical model based on a finite differences scheme for the estimation of the thermal parameters g and Ug-value has been developed and tuned using experimental value measured on sample BIPV with a Hot Plate and a Solar Calorimeter. The results of the model show that the introduction of solar cells in a laminated glass or in a double glass leads to a reduction of energy parameters modifying winter and summer energy balance of the building system

    Nonanticommutative superspace and N= 1/2 WZ model

    Full text link
    In these proceedings we review the main results concerning superspace geometries with nonanticommutative spinorial variables and field theories formulated on them. In particular, we report on the quantum properties of the WZ model formulated in the N=1/2 nonanticommutative superspace.Comment: 9 pages, plain Latex, contribution to the proceedings of the Copenhagen RTN workshop, 15-20 September 200

    Wilsonian Proof for Renormalizability of N=1/2 Supersymmetric Field Theories

    Full text link
    We provide Wilsonian proof for renormalizability of four-dimensional quantum field theories with N=1/2{\cal N}=1/2 supersymmetry. We argue that the non-hermiticity inherent to these theories permits assigning noncanonical scaling dimension both for the Grassman coordinates and superfields. This reassignment can be done in such a way that the non(anti)commutativity parameter is dimensionless, and then the rest of the proof ammounts to power counting. The renormalizability is also stable against adding standard four-dimensional soft-breaking terms to the theory. However, with the new scaling dimension assignments, some of these terms are not just relevant deformations of the theory but become marginal.Comment: 10 pages, no figure, v2: minor correctio

    Instantons and Matter in N=1/2 Supersymmetric Gauge Theory

    Full text link
    We extend the instanton calculus for N=1/2 U(2) supersymmetric gauge theory by including one massless flavor. We write the equations of motion at leading order in the coupling constant and we solve them exactly in the non(anti)commutativity parameter C. The profile of the matter superfield is deformed through linear and quadratic corrections in C. Higher order corrections are absent because of the fermionic nature of the back-reaction. The instanton effective action, in addition to the usual 't Hooft term, includes a contribution of order C^2 and is N=1/2 invariant. We argue that the N=1 result for the gluino condensate is not modified by the presence of the new term in the effective action.Comment: 33 pages, harvmac; v2: minor changes, added references; v3: added analysis of the instanton measure in section

    Comments on Gluino Condensates in N=1/2 SYM Theory

    Full text link
    Using Ward identities of N=1/2 supersymmetric Yang-Mills theory, we show that while the partition function and antichiral gluino condensates remain invariant under the CC deformation, chiral gluino correlators can get contributions from all gauge fields with instanton numbers k1k\leq 1. In particular, a Ward identity of the U(1)RU(1)_R symmetry allows us to determine the explicit dependence of chiral gluino correlators on the deformation parameter.Comment: 11 pages, 4 figures, small changes, added a referenc

    N=1/2 Super Yang-Mills Theory on Euclidean AdS2xS2

    Full text link
    We study D-branes in the background of Euclidean AdS2xS2 with a graviphoton field turned on. As the background is not Ricci flat, the graviphoton field must have both self-dual and antiself-dual parts. This, in general, will break all the supersymmetries on the brane. However, we show that there exists a limit for which one can restore half of the supersymmetries. Further, we show that in this limit, the N=1/2 SYM Lagrangian on flat space can be lifted on to the Euclidean AdS2xS2 preserving the same amount of supersymmetries as in the flat case. We observe that without the C-dependent terms present in the action this lift is not possible.Comment: 12 pages, latex file; v2: minor corrections, references adde

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure
    corecore