844 research outputs found

    Divertor design and Materials

    Get PDF

    Divertor design and materials

    Get PDF

    Non-spiky density of states of an icosahedral quasicrystal

    Full text link
    The density of states of the ideal three-dimensional Penrose tiling, a quasicrystalline model, is calculated with a resolution of 10 meV. It is not spiky. This falsifies theoretical predictions so far, that spikes of width 10-20 meV are generic for the density of states of quasicrystals, and it confirms recent experimental findings. The qualitative difference between our results and previous calculations is partly explained by the small number of k points that has usually been included in the evaluation of the density of states of periodic approximants of quasicrystals. It is also shown that both the density of states of a small approximant of the three-dimensional Penrose tiling and the density of states of the ideal two-dimensional Penrose tiling do have spiky features, which also partly explains earlier predictions.Comment: 8 pages, 4 figures. Changes in this version: longer introduction, details of figures shown in inset

    High speed wafer scale bulge testing for the determination of thin film mechanical properties

    Get PDF
    Journal ArticleA wafer scale bulge testing system has been constructed to study the mechanical properties of thin films and microstructures. The custom built test stage was coupled with a pressure regulation system and optical profilometer which gives high accuracy three-dimensional topographic images collected on the time scale of seconds. Membrane deflection measurements can be made on the wafer scale (50-150 mm) with up to nanometer-scale vertical resolution. Gauge pressures up to 689 kPa (100 psi) are controlled using an electronic regulator with and accuracy of approximately 0.344 kPa (0.05 psi). Initial testing was performed on square diaphragms 350, 550, and 1200 µm in width comprised of 720± 10 nm thick low pressure chemical vapor deposited silicon nitride with ~20 nm of e-beam evaporated aluminum. These initial experiments were focused on measuring the system limitations and used to determine what range of deflections and pressures can be accurately measured and controlled. Gauge pressures from 0 to ~8.3 kPa (1.2 psi) were initially applied to the bottom side of the diaphragms and their deflection was subsequently measured. The overall pressure resolution of the system is good (~350 Pa) but small fluctuations existed at pressures below 5 kPa leading to a larger standard deviation between deflection measurements. Analytical calculations and computed finite element analysis deflections closely matched those empirically measured. Using an analytical solution that relates pressure deflection data for the square diaphragms the Young's modulus was estimated for the films assuming a Poisson's ratio of v=0.25. Calculations to determine Young's modulus for the smaller diaphragms proved difficult because the pressure deflection relationship remained in the linear regime over the tested pressure range. Hence, the calculations result in large error when used to estimate the Young's modulus for the smaller membranes. The deflection measurements of three 1200x1200 µm2 Si3N4−x membranes were taken at increased pressures (>25 kPa) to increase nonlinearity and better determine Young's modulus. This pressure-deflection data were fit to an analytical solution and Young's modulus estimated to be 257±3 GPa, close to those previously reported in literature

    Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Get PDF
    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments
    • …
    corecore