37 research outputs found

    Systematic Identification of Novel, Essential Host Genes Affecting Bromovirus RNA Replication

    Get PDF
    Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2aPol levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2aPol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control

    Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast

    Get PDF
    In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H2O2). Surprisingly, there was little overlap in the genes required for acquisition of H2O2 tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H2O2 in each case. Integrative network analysis of these results with respect to protein–protein interactions, synthetic–genetic interactions, and functional annotations identified many processes not previously linked to H2O2 tolerance. We tested and present several models that explain the lack of overlap in genes required for H2O2 tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication.

    Get PDF
    The tobacco etch potyvirus (TEV) genome encodes a polyprotein that is processed by three virus-encoded proteinases. Although replication of TEV likely occurs in the cytoplasm, two replication-associated proteins, VPg-proteinase (nuclear inclusion protein a) (NIa) and RNA-dependent RNA polymerase (nuclear inclusion protein b) (NIb), accumulate in the nucleus of infected cells. The 6-kDa protein is located adjacent to the N terminus of NIa in the TEV polyprotein, and, in the context of a 6-kDa protein/NIa (6/NIa) polyprotein, impedes nuclear translocation of NIa (M. A. Restrepo-Hartwig and J. C. Carrington, J. Virol. 66:5662-5666, 1992). The 6-kDa protein and three polyproteins containing the 6-kDa protein were identified by affinity chromatography of extracts from infected plants. Two of the polyproteins contained NIa or the N-terminal VPg domain of NIa linked to the 6-kDa protein. To investigate the role of the 6-kDa protein in vivo, insertion and substitution mutagenesis was targeted to sequences coding for the 6-kDa protein and its N- and C-terminal cleavage sites. These mutations were introduced into a TEV genome engineered to express the reporter protein beta-glucuronidase (GUS), allowing quantitation of virus amplification by a fluorometric assay. Three-amino-acid insertions at each of three positions in the 6-kDa protein resulted in viruses that were nonviable in tobacco protoplasts. Disruption of the N-terminal cleavage site resulted in a virus that was approximately 10% as active as the parent, while disruption of the C-terminal processing site eliminated virus viability. The subcellular localization properties of the 6-kDa protein were investigated by fractionation and immunolocalization of 6-kDa protein/GUS (6/GUS) fusion proteins in transgenic plants. Nonfused GUS was associated with the cytosolic fraction (30,000 x g centrifugation supernatant), while 6/GUS and GUS/6 fusion proteins sedimented with the crude membrane fraction (30,000 x g centrifugation pellet). The GUS/6 fusion protein was localized to apparent membranous proliferations associated with the periphery of the nucleus. These data suggest that the 6-kDa protein is membrane associated and is necessary for virus replication

    Regulation of nuclear transport of a plant potyvirus protein by autoproteolysis.

    Get PDF
    The NIa proteinase encoded by tobacco etch potyvirus catalyzes six processing events, three of which occur by an autoproteolytic mechanism. Autoproteolysis is necessary to cleave the boundaries of both NIa and the 6-kDa protein, which is located adjacent to the N terminus of NIa in the viral polyprotein. As a consequence, NIa may exist in a free form or in a transient polyprotein form containing the 6-kDa protein. While the majority of NIa molecules localize to the nuclei of infected cells, a fraction of the NIa pool is attached covalently to the 5' terminus of genomic RNA in the cytoplasm. To determine whether the presence of the 6-kDa protein affects the nuclear transport properties of NIa, we have generated transgenic plants that express genes encoding a reporter enzyme, beta-glucuronidase (GUS), fused to NIa or NIa-containing polyproteins. The NIa/GUS fusion protein was detected by histochemical analysis in the nucleus. Similarly, an NIa/GUS fusion protein that arose by autoproteolysis of a 6-kDa/NIa/GUS polyprotein was found in the nucleus. In contrast, fusion protein consisting of 6-kDa/NIa/GUS, which failed to undergo proteolysis because of the presence of a Cys-to-Ala substitution in the proteolytic domain of NIa, was detected in the cytoplasm. The inhibition of NIa-mediated nuclear transport was not due to the Cys-to-Ala substitution, since this alteration had no effect on translocation in the absence of the 6-kDa protein. These results indicate that the 6-kDa protein impedes nuclear localization of NIa and suggest that subcellular transport of NIa may be regulated by autoproteolysis

    Viral Manipulation of Plant Host Membranes

    No full text

    Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo.

    Get PDF
    The NIa protein of plant potyviruses is a bifunctional protein containing an N-terminal VPg domain and a C-terminal proteinase region. The majority of tobacco etch potyvirus (TEV) NIa molecules are localized to the nucleus of infected cells, although a proportion of NIa is attached covalently as VPg to viral RNA in the cytoplasm. A suboptimal cleavage site that is recognized by the NIa proteinase is located between the two domains. This site was found to be utilized in the VPg-associated, but not the nuclear, pool of NIa. A mutation converting Glu-189 to Leu at the P1 position of the processing site inhibited internal cleavage. Introduction of this mutation into TEV-GUS, an engineered variant of TEV that expresses a reporter protein (beta-glucuronidase [GUS]) fused to the N terminus of the helper component-proteinase (HC-Pro), rendered the virus replication defective in tobacco protoplasts. Site-specific reversion of the mutant internal processing site to the wild-type sequence restored virus viability. In addition, the trans-processing activity of NIa proteinase was tested in vivo after introduction of an artificial cleavage site between the GUS and HC-Pro sequences in the cytoplasmic GUS/HC-Pro polyprotein encoded by TEV-GUS. The novel site was recognized and processed in plants infected by the engineered virus, indicating the presence of excess NIa processing capacity in the cytoplasm. The potential roles of internal NIa processing in TEV-infected cells are discussed

    Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication

    No full text
    All positive-strand RNA [(+)RNA] viruses replicate their RNA on intracellular membranes, often in association with spherular invaginations of the target membrane. For brome mosaic virus, we previously showed that such spherules serve as compartments or mini-organelles for RNA replication and that their assembly, structure, and function have similarities to the replicative cores of retrovirus and double-stranded RNA virus virions. Some other (+)RNA viruses conduct RNA replication in association with individual or clustered double-membrane vesicles, appressed double membranes, or other structures whose possible relationships to the spherular invaginations are unclear. Here we show that modulating the relative levels and interactions of brome mosaic virus replication factors 1a and 2a polymerase (2a(pol)) shifted the membrane rearrangements associated with RNA replication from small invaginated spherules to large, karmellae-like, multilayer stacks of appressed double membranes that supported RNA replication as efficiently as spherules. Spherules were induced by expressing 1a, which has functional similarities to retrovirus virion protein Gag, or 1a plus low levels of 2a(pol). Double-membrane layers were induced by 1a plus higher levels of 2a(pol) and were suppressed by deleting the major 1a-interacting domain from 2a(pol). The stacked, double-membrane layers alternated with spaces that, like spherule interiors, were 50–60 nm wide, connected to the cytoplasm, and contained 1a and 2a(pol). These and other results suggest that seemingly diverse membrane rearrangements associated with RNA replication by varied (+)RNA viruses may represent topologically and functionally related structures formed by similar protein–protein and protein–membrane interactions and interconverted by altering the balances among those interactions
    corecore