185 research outputs found

    Large mixing angle solution to the solar neutrino problem and random matter density perturbations

    Full text link
    There are reasons to believe that mechanisms exist in the solar interior which lead to random density perturbations in the resonant region of the Large Mixing Angle solution to the solar neutrino problem. We find that, in the presence of these density perturbations, the best fit point in the (sin^2(2\theta), Delta_m^2) parameter space moves to smaller values, compared with the values obtained for the standard LMA solution. Combining solar data with KamLAND results, we find a new compatibility region, which we call VERY-LOW LMA, where sin^2(2\theta) ~ 0.6 and Delta_m^2~2e-5 eV^2, for random density fluctuations of order 5% < \xi< 8%. We argue that such values of density fluctuations are still allowed by helioseismological observations at small scales of order 10 - 1000 km deep inside the solar core.Comment: References and discussion added, with some small numerical corrections implemente

    Effects of magnetohydrodynamics matter density fluctuations on the solar neutrino resonant spin-flavor precession

    Full text link
    Taking into account the stringent limits from helioseismology observations on possible matter density fluctuations described by magnetohydrodynamics theory, we find the corresponding time variations of solar neutrino survival probability due to the resonant spin-flavor precession phenomenon with amplitude of order O(10%). We discuss the physics potential of high statistics real time experiments, like as Superkamiokande, to observe the effects of such magnetohydrodynamics fluctuations on their data. We conclude that these observations could be thought as a test of the resonant spin-flavor precession solution to the solar neutrino anomaly.Comment: 16 pages, 3 figure

    Influence of the solar and density perturbations on the neutrino parameters

    Get PDF
    There are reasons to believe that the solar matter density fluctuates around an equilibrium profile. One of these reasons is a resonance between the Alfvén waves and the g-modes inside the Sun that creates spikes in the density profile. The neutrinos are created in the solar core and passing through these spikes feel them as a noisy perturbation, whose correlation length is given by the distance between the spikes. When we consider these perturbations on the density profile, the values of the neutrino parameters necessary to obtain a solution to the solar neutrino problem are affected. In particular, in the present work, we show that the values of the parameters of mass and mixing angle that satisfy both the Large Mixing Angle solution to the solar neutrinos and the data from KamLAND - that observes neutrinos created in earth nuclear reactors - are shifted in the direction of lower values as the amplitude of the density noise increases. This means that, depending on the new data of KamLAND and other detectors, it can be necessary to invoke random perturbations in the Sun to recover compatibility with solar neutrino observations. In this case, the neutrino observations will be used as a real probe of the solar interior, giving information of the density profile in the central part of the Sun, which can not be observed directly.1729173

    Measurement of the (π\pi^-, Ar) total hadronic cross section at the LArIAT experiment

    Get PDF
    We present the first measurement of the negative pion total hadronic cross section on argon, which we performed at the Liquid Argon In A Testbeam (LArIAT) experiment. All hadronic reaction channels, as well as hadronic elastic interactions with scattering angle greater than 5~degrees are included. The pions have a kinetic energies in the range 100-700~MeV and are produced by a beam of charged particles impinging on a solid target at the Fermilab Test Beam Facility. LArIAT employs a 0.24~ton active mass Liquid Argon Time Projection Chamber (LArTPC) to measure the pion hadronic interactions. For this measurement, LArIAT has developed the ``thin slice method", a new technique to measure cross sections with LArTPCs. While generally higher than the prediction, our measurement of the (π\pi^-,Ar) total hadronic cross section is in agreement with the prediction of the Geant4 model when considering a model uncertainty of \sim5.1\%.Comment: 15 pages, 15 figures, 3 tables, accepted by PR

    The Liquid Argon In A Testbeam (LArIAT) Experiment

    Get PDF
    The LArIAT liquid argon time projection chamber, placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility, has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range 300-1400 MeV/c. This paper describes the main aspects of the detector and beamline, and also reports on calibrations performed for the detector and beamline components

    First measurement of quasi-elastic Λ\Lambda baryon production in muon anti-neutrino interactions in the MicroBooNE detector

    Full text link
    We present the first measurement of the cross section of Cabibbo-suppressed Λ\Lambda baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the Main Injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10202.2 \times 10^{20} protons on target of neutrino mode running and 4.9×10204.9 \times 10^{20} protons on target of anti-neutrino mode running. An automated selection is combined with hand scanning, with the former identifying five candidate Λ\Lambda production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.15.3 \pm 1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.03.7 \pm 1.0 events. Restricting the phase space to only include Λ\Lambda baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.01.7+2.2×10402.0^{+2.2}_{-1.7} \times 10^{-40} cm2/^2/Ar, where statistical and systematic uncertainties are combined

    First Measurement of Differential Cross Sections for Muon Neutrino Charged Current Interactions on Argon with a Two-proton Final State in the MicroBooNE Detector

    Full text link
    We present the first measurement of differential cross sections for charged-current muon neutrino interactions on argon with one muon, two protons, and no pions in the final state. Such interactions leave the target nucleus in a two-particle two-hole state; these states are of great interest, but currently there is limited information about their production in neutrino-nucleus interactions. Detailed investigations of the production of two-particle two-hole states are vital to support upcoming experiments exploring the nature of the neutrino, and the development of the liquid-argon time-projection-chamber has made possible the isolation of such final states. The opening angle between the two protons, the angle between the total proton momentum and the muon, and the total transverse momentum of the final state system are sensitive to the underlying physics processes as embodied in a variety of models. Realistic initial-state momentum distributions are shown to be important in reproducing the data.Comment: To be submitted to PR

    Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector

    Full text link
    We report the first measurement of the differential cross section d2σ(Eν)/dcos(θμ)dPμd^{2}\sigma (E_{\nu})/ d\cos(\theta_{\mu}) dP_{\mu} for inclusive muon-neutrino charged-current scattering on argon. This measurement utilizes data from 6.4×1020\times10^{20} protons on target of exposure collected using the MicroBooNE liquid argon time projection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping from reconstructed kinematics to truth quantities, particularly from reconstructed to true neutrino energy, is validated by comparing the distribution of reconstructed hadronic energy in data to that of the model prediction in different muon scattering angle bins after conditional constraint from the muon momentum distribution in data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled in simulation, enabling the unfolding to a triple-differential measurement over muon momentum, muon scattering angle, and neutrino energy. The unfolded measurement covers an extensive phase space, providing a wealth of information useful for future liquid argon time projection chamber experiments measuring neutrino oscillations. Comparisons against a number of commonly used model predictions are included and their performance in different parts of the available phase-space is discussed
    corecore