508 research outputs found

    Opicapone as Adjunct to Levodopa Therapy in Patients With Parkinson Disease and Motor Fluctuations: A Randomized Clinical Trial

    Get PDF
    Importance: Catechol O-methyltransferase (COMT) inhibitors are an established treatment for end-of-dose motor fluctuations associated with levodopa therapy in patients with Parkinson disease (PD). Current COMT inhibitors carry a high risk for toxic effects to hepatic cells or show moderate improvement. Opicapone was designed to be effective without the adverse effects. Objective: To evaluate the efficacy and safety of 25- and 50-mg/d dosages of opicapone compared with placebo as adjunct to levodopa therapy in patients with PD experiencing end-of-dose motor fluctuations. Design: This phase 3 international, multicenter outpatient study evaluated a 25- and a 50-mg/d dosage of opicapone in a randomized, double-blind, 14- to 15-week, placebo-controlled clinical trial, followed by a 1-year open-label phase during which all patients received active treatment with opicapone. Patients with PD who experienced signs of end-of-dose deterioration and had a mean total awake off-time (state of akinesia or decreased mobility) of at least 1.5 hours, not including morning akinesia, were enrolled. Data were collected from March 18, 2011, through June 25, 2013. Data from the evaluable population were analyzed from July 31, 2013, to July 31, 2014. Main Outcomes and Measures: The primary efficacy outcome of the double-blind phase was the change from baseline in absolute off-time vs placebo based on patient diaries. The open-label phase focused on maintenance of treatment effect in off-time. Results: A total of 427 patients (258 men [60.4%] and 169 women [39.6%]; mean [SD] age, 63.1 [8.8] years) were randomized to a 25-mg/d (n = 129) or a 50-mg/d (n = 154) dosage of opicapone or to placebo (n = 144). Of these, 376 patients completed the double-blind phase and entered the open-label phase, of whom 286 completed 1 year of open-label treatment. At the end of the double-blind phase, the least squares mean change (SE) in off-time was -64.5 (14.4) minutes for the placebo group, -101.7 (14.9) minutes for the 25-mg/d opicapone group, and -118.8 (13.8) minutes for the 50-mg/d opicapone group. The adjusted treatment difference vs placebo was significant for the 50-mg/d opicapone group (treatment effect, -54.3 [95% CI, -96.2 to -12.4] minutes; P = .008), but not for the 25-mg/d opicapone group (treatment effect, -37.2 [95% CI, -80.8 to 6.4] minutes; P = .11). The off-time reduction was sustained throughout the open-label phase (-126.3 minutes at 1-year open-label end point). The most common adverse events in the opicapone vs placebo groups were dyskinesia, constipation, and dry mouth. Fifty-one patients (11.9%) discontinued from the study during the double-blind phase. Conclusions and Relevance: Treatment with a 50-mg once-daily dose of opicapone was associated with a significant reduction in mean daily off-time in levodopa-treated patients with PD and motor fluctuations, and this effect is maintained for at least 1 year. Opicapone was safe and well tolerated. Trial Registration: clinicaltrials.gov Identifier: NCT01227655

    Broad white matter impairment in multiple system atrophy.

    Full text link
    Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by the widespread aberrant accumulation of α-synuclein (α-syn). MSA differs from other synucleinopathies such as Parkinson's disease (PD) in that α-syn accumulates primarily in oligodendrocytes, the only source of white matter myelination in the brain. Previous MSA imaging studies have uncovered focal differences in white matter. Here, we sought to build on this work by taking a global perspective on whole brain white matter. In order to do this, in vivo structural imaging and diffusion magnetic resonance imaging were acquired on 26 MSA patients, 26 healthy controls, and 23 PD patients. A refined whole brain approach encompassing the major fiber tracts and the superficial white matter located at the boundary of the cortical mantle was applied. The primary observation was that MSA but not PD patients had whole brain deep and superficial white matter diffusivity abnormalities (p < .001). In addition, in MSA patients, these abnormalities were associated with motor (Unified MSA Rating Scale, Part II) and cognitive functions (Mini-Mental State Examination). The pervasive whole brain abnormalities we observe suggest that there is widespread white matter damage in MSA patients which mirrors the widespread aggregation of α-syn in oligodendrocytes. Importantly, whole brain white matter abnormalities were associated with clinical symptoms, suggesting that white matter impairment may be more central to MSA than previously thought

    King's Parkinson's disease pain scale, the first scale for pain in PD: An international validation

    Get PDF
    Pain is a key unmet need and a major aspect of non‐motor symptoms of Parkinson's disease (PD). No specific validated scales exist to identify and grade the various types of pain in PD. We report an international, cross‐sectional, open, multicenter, one‐point‐in‐time evaluation with retest study of the first PD‐specific pain scale, the King's PD Pain Scale. Its seven domains include 14 items, each item scored by severity (0‐3) multiplied by frequency (0‐4), resulting in a subscore of 0 to 12, with a total possible score range from 0 to 168. One hundred seventy‐eight PD patients with otherwise unexplained pain (age [mean ± SD], 64.38 ± 11.38 y [range, 29‐85]; 62.92% male; duration of disease, 5.40 ± 4.93 y) and 83 nonspousal non‐PD controls, matched by age (64.25 ± 11.10 y) and sex (61.45% males) were studied. No missing data were noted, and floor effect was observed in all domains. The difference between mean and median King's PD Pain Scale total score was less than 10% of the maximum observed value. Skewness was marginally high (1.48 for patients). Factor analysis showed four factors in the King's PD Pain Scale, explaining 57% of the variance (Kaiser‐Mayer‐Olkin, 0.73; sphericity test). Cronbach's alpha was 0.78, item‐total correlation mean value 0.40, and item homogeneity 0.22. Correlation coefficients of the King's PD Pain Scale domains and total score with other pain measures were high. Correlation with the Scale for Outcomes in PD‐Motor, Non‐Motor Symptoms Scale total score, and quality of life measures was high. The King's PD Pain Scale seems to be a reliable and valid scale for grade rating of various types of pain in PD. © 2015 International Parkinson and Movement Disorder Societ

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Antineoplastic activity of idazoxan hydrochloride

    Get PDF
    Idazoxan hydrochloride (IDA) is a 241 molecular weight imidazoline and adrenoreceptor ligand. It binds to mitochondrial membranes and promotes apoptosis of pancreatic beta cells. Since IDA has not been tested against tumor cells, the purpose of our study was to determine if IDA has antineoplastic activity. We used the conversion of a soluble tetrazolium salt to an insoluble formazan precipitate and differential staining cytotoxicity assays to determine if IDA was cytotoxic to cell lines of murine lung cancer and human prostate cancer, as well as to a variety of fresh human tumor samples. We used flow cytometry to analyze cell death and calreticulin expression. IDA is cytotoxic to both cell lines and against aliquots of specimens of breast, gastric, lung, ovarian and prostate cancers as well as non-Hodgkin’s lymphoma. It produces apoptotic cell death and promotes calreticulin expression, suggesting that IDA might be immunomodulatory in vivo. We anticipate that IDA will be clinically useful in cancer treatment

    Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after L‐DOPA in a mouse model of Parkinson's disease

    Get PDF
    Background and Purpose: L-DOPA-induced dyskinesia (LID) remains a major complication of L-DOPA therapy in Parkinson's disease. LID is believed to result from inhibition of substantia nigra reticulata (SNr) neurons by GABAergic striatal projection neurons that become supersensitive to dopamine receptor stimulation after severe nigrostriatal degeneration. Here, we asked if stimulation of direct medium spiny neuron (dMSN) GABAergic terminals at the SNr can produce a full dyskinetic state similar to that induced by L-DOPA. Experimental Approach: Adult C57BL6 mice were lesioned with 6-hydroxydopamine in the medial forebrain bundle. Channel rhodopsin was expressed in striatonigral terminals by ipsilateral striatal injection of adeno-associated viral particles under the CaMKII promoter. Optic fibres were implanted on the ipsilateral SNr. Optical stimulation was performed before and 24 hr after three daily doses of L-DOPA at subthreshold and suprathreshold dyskinetic doses. We also examined the combined effect of light stimulation and an acute L-DOPA challenge. Key Results: Optostimulation of striatonigral terminals inhibited SNr neurons and induced all dyskinesia subtypes (optostimulation-induced dyskinesia [OID]) in 6-hydroxydopamine animals, but not in sham-lesioned animals. Additionally, chronic L-DOPA administration sensitised dyskinetic responses to striatonigral terminal optostimulation, as OIDs were more severe 24 hr after L-DOPA administration. Furthermore, L-DOPA combined with light stimulation did not result in higher dyskinesia scores than OID alone, suggesting that optostimulation has a masking effect on LID. Conclusion and Implications: This work suggests that striatonigral inhibition of basal ganglia output (SNr) is a decisive mechanism mediating LID and identifies the SNr as a target for managing LID.Fil: Keifman, Ettel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Ruiz De Diego, Irene. Consejo Superior de Investigaciones Científicas; EspañaFil: Pafundo, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Paz, Rodrigo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Solís, Oscar. Consejo Superior de Investigaciones Científicas; EspañaFil: Murer, Mario Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Moratalla, Rosario. Consejo Superior de Investigaciones Científicas; Españ

    Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society

    A Methodological Framework for the Reconstruction of Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes

    Get PDF
    The reconstruction of ancestral genome architectures and gene orders from homologies between extant species is a long-standing problem, considered by both cytogeneticists and bioinformaticians. A comparison of the two approaches was recently investigated and discussed in a series of papers, sometimes with diverging points of view regarding the performance of these two approaches. We describe a general methodological framework for reconstructing ancestral genome segments from conserved syntenies in extant genomes. We show that this problem, from a computational point of view, is naturally related to physical mapping of chromosomes and benefits from using combinatorial tools developed in this scope. We develop this framework into a new reconstruction method considering conserved gene clusters with similar gene content, mimicking principles used in most cytogenetic studies, although on a different kind of data. We implement and apply it to datasets of mammalian genomes. We perform intensive theoretical and experimental comparisons with other bioinformatics methods for ancestral genome segments reconstruction. We show that the method that we propose is stable and reliable: it gives convergent results using several kinds of data at different levels of resolution, and all predicted ancestral regions are well supported. The results come eventually very close to cytogenetics studies. It suggests that the comparison of methods for ancestral genome reconstruction should include the algorithmic aspects of the methods as well as the disciplinary differences in data aquisition
    • 

    corecore