516 research outputs found

    Detection and Isolation of Link Failures under the Agreement Protocol

    Full text link
    In this paper a property of the multi-agent consensus dynamics that relates the failure of links in the network to jump discontinuities in the derivatives of the output responses of the nodes is derived and verified analytically. At the next step, an algorithm for sensor placement is proposed, which would enable the designer to detect and isolate any link failures across the network based on the observed jump discontinuities in the derivatives of the responses of a subset of nodes. These results are explained through elaborative examples.Comment: 6 pages, 3 figures, IEEE Conference on Decision and Control, 201

    Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    Get PDF
    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence wnT=(w1(n),,wn(n))\overline{w}_n^{^{T}} = (w^{(n)}_1,\ldots,w^{(n)}_n) is prescribed on the ensemble. Let ai,j=1\mathbf{a}_{i,j} =1 if there is an edge between the nodes {i,j}\{i,j\} and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: An\mathbf{A}_n == [ai,j/n]i,j=1n [\mathbf{a}_{i,j}/\sqrt{n}]_{i,j=1}^{n}. The empirical spectral distribution of An\mathbf{A}_n denoted by Fn()\mathbf{F}_n(\mathord{\cdot}) is the empirical measure putting a mass 1/n1/n at each of the nn real eigenvalues of the symmetric matrix An\mathbf{A}_n. Under some technical conditions on the expected degree sequence, we show that with probability one, Fn()\mathbf{F}_n(\mathord{\cdot}) converges weakly to a deterministic distribution F()F(\mathord{\cdot}). Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of F()F(\mathord{\cdot}). We apply our results to well-known degree distributions, such as power-law and exponential. The asymptotic expressions of the spectral moments in each case provide significant insights about the bulk behavior of the eigenvalue spectrum

    Effect of ethanolic extract of Adiantum capillus-veneris in comparison with Gentamicine on 3 pathogenic bacteria in vitro

    Get PDF
    Objectives: Adiantum capillus-veneris is one of herbs that has been used in traditional medicine of Iran and has mucolytic and antipyretic effects. Antibiotic resistancy is developing against severe bacteria,due to irrational prescription. Therefore, we assessed Adiantum capillus-veneris effects as a medicinal herb on three common bacteria. Methods: Ethanolic extract of Adiantum capillus-veneris was prepared by a pharmacology company with perculation method and was diluted in distilled water to 1/2,1/4 and 1/8 concentration.blank discs were placed in extracts for one day.Then ,the bacteria were cultured in muller hinton agar plate and the discs were placed on them.We used Gentamicine disc as control.After incubation in 37° for 24 hour, the diameter of no growth hallo around the discs were read. Results: The ethanolic extract of Adiantum capillus-veneris herb has no antimicrobial effects on the bacteria. Conclusion: Results of this study suggested that ethanolic extract of Adiantum capillus-veneris has no antimicrobial effects on this three bacteria mentioned above.Because this herb has been used in traditional medicine, we suggest more studies about it

    Long ties accelerate noisy threshold-based contagions

    Full text link
    Network structure can affect when and how widely new ideas, products, and behaviors are adopted. In widely-used models of biological contagion, interventions that randomly rewire edges (generally making them "longer") accelerate spread. However, there are other models relevant to social contagion, such as those motivated by myopic best-response in games with strategic complements, in which an individual's behavior is described by a threshold number of adopting neighbors above which adoption occurs (i.e., complex contagions). Recent work has argued that highly clustered, rather than random, networks facilitate spread of these complex contagions. Here we show that minor modifications to this model, which make it more realistic, reverse this result: we allow very rare below-threshold adoption, i.e., rarely adoption occurs when there is only one adopting neighbor. To model the trade-off between long and short edges we consider networks that are the union of cycle-power-kk graphs and random graphs on nn nodes. Allowing adoptions below threshold to occur with order 1/n1/\sqrt{n} probability along some "short" cycle edges is enough to ensure that random rewiring accelerates spread. Simulations illustrate the robustness of these results to other commonly-posited models for noisy best-response behavior. Hypothetical interventions that randomly rewire existing edges or add random edges (versus adding "short", triad-closing edges) in hundreds of empirical social networks reduce time to spread. This revised conclusion suggests that those wanting to increase spread should induce formation of long ties, rather than triad-closing ties. More generally, this highlights the importance of noise in game-theoretic analyses of behavior

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies
    corecore